對(duì)于定義在R上的函數(shù)f(x),可以證明點(diǎn)A(m,n)是f(x)圖象的一個(gè)對(duì)稱點(diǎn)的充要條件是f(m-x)+f(m+x)=2n,x∈R.
(1)求函數(shù)f(x)=x3+3x2圖象的一個(gè)對(duì)稱點(diǎn);
(2)函數(shù)f(x)=ax3+(b-2)x2(a,b∈R)在R上是奇函數(shù),求a,b滿足的條件;并討論在區(qū)間[-1,1]上是否存在常數(shù)a,使得f(x)≥-x2+4x-2恒成立?
(3)試寫出函數(shù)y=f(x)的圖象關(guān)于直線X=M對(duì)稱的充要條件(不用證明);利用所學(xué)知識(shí),研究函數(shù)f(x)=ax3+bx2(a,b∈R)圖象的對(duì)稱性.
分析:(1)因?yàn)辄c(diǎn)A(m,n)是f(x)圖象的一個(gè)對(duì)稱點(diǎn)的充要條件是f(m-x)+f(m+x)=2n,x∈R.可設(shè)A(m,n)為f(x)的一個(gè)對(duì)稱點(diǎn)則得到f(m-x)+f(m+x)=2n成立即可解出m和n;
(2)根據(jù)函數(shù)是奇函數(shù)可知f(-x)+f(x)=0得a、b的值;把a(bǔ)b代入的f(x)的解析式讓f(x)≥-x2+4x-2推出矛盾即可說(shuō)明不存在;
(3)函數(shù)y=f(x)的圖象關(guān)于直線X=M對(duì)稱的充要條件是f(m+x)=f(m-x);分析函數(shù)f(x)=ax3+bx2(a,b∈R)圖象的對(duì)稱性.f(m+x)+f(m-x)=2m可求出對(duì)稱點(diǎn)的坐標(biāo).
解答:解:(1)解:設(shè)A(m,n)為函數(shù)f(x)=x3+3x2圖象的一個(gè)對(duì)稱點(diǎn),則f(m-x)+f(m+x)=2n,對(duì)于x∈R恒成立.即(m-x)3+3(m-x)2+(m+x)3+3(m+x)2=2n對(duì)于x∈R恒成立,
∴(6m+6)x2+(2m3+6m2-2n)=0由
6m+6=0
2m3+6m2-2n=0
解得:
m=-1
n=2

故函數(shù)f(x)圖象的一個(gè)對(duì)稱點(diǎn)為(-1,2).
(2)①因?yàn)楹瘮?shù)是奇函數(shù),則由f(-x)=-f(x)得:-ax3+(b-2)x2=-ax3-(b-2)x2,
解得a∈R,b=2;
②當(dāng)a∈R,b=2時(shí)f(x)是奇函數(shù).不存在常數(shù)a使f(x)≥-x2+4x-2x∈[-1,1]時(shí)恒成立.
依題,此時(shí)f(x)=ax3,
令g(x)=-x2+4x-2,x∈[-1,1],
∴g(x)∈[-7,1],
若a=0,f(x)=0,不合題;
若a>0,f(x)=ax3此時(shí)為單調(diào)增函數(shù),f(x)min=-a.
若存在a合題,則-a≥1,與a>0矛盾.
若a<0,f(x)=ax3此時(shí)為單調(diào)減函數(shù),
f(x)min=a若存在a合題,則a≥1,與a<0矛盾.
綜上可知,符合條件的a不存在.
(3)函數(shù)的圖象關(guān)于直線x=m對(duì)稱的充要條件是f(m+x)=f(m-x)
①a=b=0時(shí),f(x)=0(x∈R),其圖象關(guān)于x軸上任意一點(diǎn)成中心對(duì)稱;關(guān)于平行于y軸的任意一條直線成軸對(duì)稱圖形;
②a=0,b≠0時(shí),f(x)=bx2(x∈R),其圖象關(guān)于y軸對(duì)稱圖形;
③a≠0,b=0時(shí),f(x)=ax3,其圖象關(guān)于原點(diǎn)中心對(duì)稱;
④a≠0,b≠0時(shí),f(x)=ax3+bx2的圖象不可能是軸對(duì)稱圖形.
設(shè)A(m,n)為函數(shù)f(x)=ax3+bx2圖象的一個(gè)對(duì)稱點(diǎn),則f(m-x)+f(m+x)=2n對(duì)于x∈R恒成立.即a(m-x)3+b(m-x)2+a(m+x)3+b(m+x)2=2n對(duì)于x∈R恒成立,(3am+b)x2+(am3+bm2-n)=0
由,由
3am+b=0
am3+bm2-n=0
解得
m=-
b
3a
n=
2b3
27a2

故函數(shù)f(x)圖象的一個(gè)對(duì)稱點(diǎn)為(-
b
3a
,
2b3
27a2
).
點(diǎn)評(píng):考查學(xué)生應(yīng)用函數(shù)奇偶性的能力,奇偶函數(shù)圖象的對(duì)稱性研究能力,理解函數(shù)恒成立問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、對(duì)于定義在R上的函數(shù)f(x),若實(shí)數(shù)x0滿足f(x0)=x0,則稱x0是函數(shù)f(x)的一個(gè)不動(dòng)點(diǎn).若二次函數(shù)f(x)=x2+ax+1沒(méi)有不動(dòng)點(diǎn),則實(shí)數(shù)a的取值范圍是
-1<a<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在R上的函數(shù)f(x),下列判斷正確的是(  )
①若f(-2)=f(2),則函數(shù)f(x)是偶函數(shù);
②若f(-2)≠f(2),則函數(shù)f(x)不是偶函數(shù);
③若f(-2)=f(2),則函數(shù)f(x)不是奇函數(shù);
④若f(0)=0,則f(x)是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•眉山一模)對(duì)于定義在R上的函數(shù)f(x),有下述命題:
①若f(x)是奇函數(shù),則f(x-1)的圖象關(guān)于點(diǎn)A(1,0)對(duì)稱;
②若函數(shù)f(x-1)的圖象關(guān)于直線x=1對(duì)稱,則f(x)為偶函數(shù);
③若對(duì)x∈R,有f(x)=f(2-x),則函數(shù)f(x)關(guān)于直線x=1對(duì)稱;
④若對(duì)x∈R,有f(x+1)=-
1f(x)
,則f(x)的最小值正周期為4.
其中正確命題的序號(hào)是
①②③
①②③
.(填寫出所有的命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州二模)若對(duì)于定義在R上的函數(shù)f(x),存在常數(shù)t(t∈R),使得f(x+t)+tf(x)=0對(duì)任意實(shí)數(shù)x均成立,則稱f(x)是階回旋函數(shù),則下面命題正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州二模)若對(duì)于定義在R上的函數(shù)f(x),存在常數(shù)t(t∈R),使得f(x+t)+tf(x)=0對(duì)任意實(shí)數(shù)x均成立,則稱f(x)是t階回旋函數(shù),則下面命題正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案