題目列表(包括答案和解析)
2 |
如圖甲,在△ABC中,∠ACB為銳角.點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
解答下列問(wèn)題:
(1)如果AB=AC,∠BAC=90º.
①當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖乙,線段CF、BD之間的位置關(guān)系為 ,數(shù)量關(guān)系為 .
②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖丙,①中的結(jié)論是否仍然成立,為什么?
(2)如果AB≠AC,∠BAC≠90º,點(diǎn)D在線段BC上運(yùn)動(dòng).
試探究:當(dāng)△ABC滿足一個(gè)什么條件時(shí),CF⊥BC(點(diǎn)C、F重合除外)?畫出相應(yīng)圖形,并說(shuō)明理由.(畫圖不寫作法)
(3)若AC=,BC=3,在(2)的條件下,設(shè)正方形ADEF的邊DE與線段CF相交于點(diǎn)P,求線段CP長(zhǎng)的最大值.
如圖甲,在△ABC中,∠ACB為銳角.點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
解答下列問(wèn)題:
(1)如果AB=AC,∠BAC=90º.
①當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖乙,線段CF、BD之間的位置關(guān)系為 ,數(shù)量關(guān)系為 .
②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖丙,①中的結(jié)論是否仍然成立,為什么?
(2)如果AB≠AC,∠BAC≠90º,點(diǎn)D在線段BC上運(yùn)動(dòng).
試探究:當(dāng)△ABC滿足一個(gè)什么條件時(shí),CF⊥BC(點(diǎn)C、F重合除外)?畫出相應(yīng)圖形,并說(shuō)明理由.(畫圖不寫作法)
(3)若AC=,BC=3,在(2)的條件下,設(shè)正方形ADEF的邊DE與線段CF相交于點(diǎn)P,求線段CP長(zhǎng)的最大值.
一、填空題:
1.60°.
2.答案不惟一,如:AE=CF,∠AEB=∠CFD,∠ ABE=∠CDF;
3.1;
4.4。
5.60
7.2-2
8.15。
9.5
10.4
11.5
12. 2,3,n。
14.
15. (-8,0)。
16.6。
17. .平行四邊形。
18.60
19.4,12
二、選擇題:
1.C
2.C
3.B
4.B
5.B
6.A
7.C。
8.B。
9.C
10.D
11.C。
12.B
13.B
14.C
15.D
16. C
17.C
18.D
19.D
20.C
21.D
22.D。
三、解答題:
1.(1)如圖答2,因?yàn)锳D∥BC,AB∥DC ------------------------------------------------- 2分
所以四邊形ABCD為平行四邊形.---------------------------------------------------------------- 3分
分別過(guò)點(diǎn)B、D作BF⊥AD,DE⊥AB,垂足分別為點(diǎn)E、F.
則BE = CF.-------------------------------------------------------------------------------------------- 4分
因?yàn)椤螪AB =∠BAF,所以Rt△DAB≌Rt△BAF.--------------------------------------------- 5分
所以AD = AB.
所以四邊形ABCD為菱形.-------------------------------------------------------------------------- 6分
(2)存在最小值和最大值.-------------------------------------------------------------------------- 7分
① 當(dāng)∠DAB = 90°時(shí),菱形ABCD為正方形,周長(zhǎng)最小值為8;---------------------------8分
② 當(dāng)AC為矩形紙片的對(duì)角線時(shí),設(shè)AB = x,如圖答3,在Rt△BCG中,
,.所以周長(zhǎng)最大值為17.-------------------------------------------9分
2.證明: ∵EF垂直平分AC,∴EF⊥AC,且AO=CO-------------------------------1′
證得:△AOE≌△COF-----------------------------------------------------------3′
證得:四邊形AECF是平行四邊形------------------------------------------------5′
由AC⊥EF可知:四邊形AECF是菱形 -------------------------------------------6′
5.(本題滿分8分)
解:(1)方法一:如圖①
∵在□ ABCD中,AD∥BC
∴∠DAB+∠ABC=180° ………………………1分
∵AE、BF分別平分∠DAB和∠ABC
∴∠DAB=2∠BAE,∠ABC=2∠ABF ………………………2分
∴2∠BAE+2∠ABF=180°
即∠BAE+∠ABF=90° ………………………3分
∴∠AMB=90°
∴AE⊥BF. …………………………4分
|