43. 查看更多

 

題目列表(包括答案和解析)

化簡或求值(本題滿分16分,5+5+6):
(1)2x2-2+3x-1-2x-x2;           
(2)a2-(3a2-b2)-3(a2-2b2
(3)已知:(x-3)2+|y+2|=0,求代數(shù)式2x2+(-x2-2xy+2y2)-2(x2-xy+2y2)的值.

查看答案和解析>>

(本題滿分12分,任選一題作答.)
Ⅰ、如圖①,在平面直角坐標系中,O為坐標原點,邊長為5的正三角形OAB的OA邊在x軸的正半軸上.點C、D同時從點O出發(fā),點C以1單位長/秒的速度向點A運動,點D以2個單位長/秒的速度沿折線OBA運動.設運動時間為t秒,0<t<5.
(1)當0<t<
52
時,證明DC⊥OA;
(2)若△OCD的面積為S,求S與t的函數(shù)關系式;
(3)以點C為中心,將CD所在的直線順時針旋轉60°交AB邊于點E,若以O、C、E、D為頂點的四邊形是梯形,求點E的坐標.
Ⅱ、(1)如圖Ⅱ-1,已知△ABC,過點A畫一條平分三角形面積的直線;
(2)如圖Ⅱ-2,已知l1∥l2,點E,F(xiàn)在l1上,點G,H在l2上,試說明△EGO與△FHO面積相等.
(3)如圖Ⅱ-3,點M在△ABC的邊上,過點M畫一條平分三角形面積的直線.

查看答案和解析>>

如圖,在平面直角坐標系中,點C(-3,0),點A、B分別在x軸,y軸的正半軸上,且滿足.

1.求點A、B坐標

2.若點P從點C出發(fā),以每秒1個單位的速度沿射線CB運動,連接AP。設△ABP面積為S,點P的運動時間為t秒,求S與t的函數(shù)關系式,并寫出自變量的取值范圍

3.在(2)的條件下,是否存在點P,使以點A、B、P為頂點的三角形與△AOB相似?若存在,請直接寫出點P的坐標;若不存在,請說明理由。(本題滿分8分)

 

查看答案和解析>>

計算(本題滿分12分,每題4分)

 (1)   ―12012+ ()-1―(3.14-π)0 

(2) (-6xy2)2(― xy +  y2―x2

(3)  先化簡,再求值:(2m+n)2-(3mn)2+5m(mn),其中m=,n=

 

查看答案和解析>>

解不等式組,并把它的解集在數(shù)軸上表示出來。(本題滿分5分)

 

查看答案和解析>>

一、填空題:

160°.

2.答案不惟一,如:AE=CF,∠AEB=∠CFD,∠ ABE=∠CDF;

3.1;

4.4。

5.60

7.2-2     

8.15。

9.5

10.4

11.5

12. 2,3,n。

14.

 

15. (-8,0)。

 

16.6。

17. .平行四邊形。

18.60

19.4,12           

二、選擇題:

1.C

 

2.C

3.B

4.B

 

5.B

6.A

 

7.C。

 

8.B。

 

9.C

 

10.D

 

 

11.C。

 

12.B

13.B 

14.C 

15.D

16. C

17.C   

18.D    

19.D

20.C

21.D

22.D。

三、解答題:

11如圖答2,因為AD∥BC,AB∥DC  ------------------------------------------------- 2分

所以四邊形ABCD為平行四邊形.---------------------------------------------------------------- 3分

分別過點B、D作BF⊥AD,DE⊥AB,垂足分別為點E、F.

則BE = CF.-------------------------------------------------------------------------------------------- 4分

因為∠DAB =∠BAF,所以Rt△DAB≌Rt△BAF.--------------------------------------------- 5分

所以AD = AB.            

所以四邊形ABCD為菱形.-------------------------------------------------------------------------- 6分

(2存在最小值和最大值.-------------------------------------------------------------------------- 7分

① 當∠DAB = 90°時,菱形ABCD為正方形,周長最小值為8;---------------------------8分

② 當AC為矩形紙片的對角線時,設AB = x,如圖答3,在Rt△BCG中,

.所以周長最大值為17.-------------------------------------------9分

          

 

 

                                                                                                 

 

 

 

 

 

 

 

 

  2.證明:  ∵EF垂直平分AC,∴EF⊥AC,且AO=CO-------------------------------1′       

              證得:△AOE≌△COF-----------------------------------------------------------3′

          證得:四邊形AECF是平行四邊形------------------------------------------------5′

       由AC⊥EF可知:四邊形AECF是菱形 -------------------------------------------6′

 

 

5.(本題滿分8分)

解:(1)方法一:如圖①

∵在 ABCD中,ADBC

∴∠DAB+∠ABC=180°                  ………………………1分

AEBF分別平分∠DAB和∠ABC

∴∠DAB=2∠BAE,∠ABC=2∠ABF              ………………………2分

∴2∠BAE+2∠ABF=180°

即∠BAE+∠ABF=90°                 ………………………3分

∴∠AMB=90°

AEBF                                     …………………………4分

      • 圖②

         

         

         

         

         

         

        方法二:如圖②,延長BC、AE相交于點P     

        ∵在ABCD中,AD∥BC

        ∴∠DAP=∠APB                                               …………………………1分

        ∵AE平分∠DAB

        ∴∠DAP=∠PAB                                               …………………………2分

        ∴∠APB=∠PAB

        ∴AB=BP                                                                   ………………………3分

        ∵BF平分∠ABP

        ∴:AP⊥BF

        即AE⊥BF.                                                            ………………………4分

        (2)方法一:線段DFCE是相等關系,即DF=CE     ………………5分

        ∵在ABCD中,CDAB

        ∴∠DEA=∠EAB

        又∵AE平分∠DAB

        ∴∠DAE=∠EAB

        ∴∠DEA=∠DAE

        DEAD                                         ………………………6分

        同理可得,CFBC                               ………………………7分

        又∵在ABCD中,ADBC

        DECF

        DEEFCFEF

        DFCE.                                         ………………………8分

        方法二:如右圖,延長BC、AE設交于點P,延長AD、BF相交于點O       …5分

        ∵在ABCD中,AD∥BC

        ∴∠DAP=∠APB                                                   

        ∵AE平分∠DAB

        ∴∠DAP=∠PAB                                                  

        ∴∠APB=∠PAB

        ∴BP=AB

        同理可得,AO=AB                 

            ∴AO=BP                                   ………………………6分

                ∵在ABCD中,AD=BC

                ∴OD=PC

         又∵在ABCD中,DC∥AB

               ∴△ODF∽△OAB,△PCE∽△PBA                  ………………………7分

               ∴,

               ∴DF=CE.                                                                     ………………………8分

         

        6. (1)(2)略  。3)設BC=x,則DC=x  ,BD=,CF=(-1)x

        GD2=GE?GB=4-2      DC2+CF2=(2GD)2   即 x2+(-1)2x2=4(4-2

        (4-2)x2=4(4-2)    x2=4   正方形ABCD的面積是4個平方單位

         

         

        7.(本小題滿分5分)

        證明:∵  AB∥CD

        ∴                …………1分

        ∵ 

        ∴  △ABO≌△CDO                 …………3分

        ∴                      …………4分

        ∴  四邊形ABCD是平行四邊形       …………5分

         

         

         

         

         

        11.證明:(1)①在中,

        ,,????????????????????????????????????????????????????????????????????????? 2分

        .????????????????????????????????????????????????????????????????????????????????????????????????? 3分

        .?????????????????????????????????????????????????????????????????????????????????????????????????? 4分

        ,

         

        12.(本題7分)

        解:(1)在梯形中,,

        ,

        ,

        ,

        .?????????????????????????????????????????????????????????????????????????????????????????????????? 2分

        .???????????????????????????????????????????????????????????????????????????????????????????????????????????? 3分

        ,

        .?????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

        的函數(shù)表達式是

        ;??????????????????????????????????????????????????????????????????????????????????????? 5分

        (2)

        .?????????????????????????????????????????????????????????????????????????????????????????????????????? 6分

        時,有最大值,最大值為.??????????????????????????????????????????????????????????????????? 7分

         

         

         

        13.證明:菱形中,.???????????????????? 1分

        分別是的中點,

        .?????????????????? 3分

        ,.????????????????? 5分

        .??????????????????????????????? 7分

        14.

        15.證明:四邊形是平行四邊形,,

        .??????????????????????????????????????????????????????????????????????????????????????????????????? 1分

        平分.????????????????????????????????????????????????????????????????? 2分

        .??????????????????????????????????????????????????????????????????????????????????????????????????? 3分

        .??????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

        ,.???????????????????????????????????????????????????????????????????????????????????? 5分

         

        16.解:(1)①40.?????????????????????????????????????????????????????????????????????????????????????????????????????? 2分

        ②0. ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

        (2)不合理.例如,對兩個相似而不全等的矩形來說,它們接近正方形的程度是相同的,但卻不相等.合理定義方法不唯一,如定義為越小,矩形越接近于正方形;越大,矩形與正方形的形狀差異越大;當時,矩形就變成了正方形.???????????????????????????????????????????????????????????????????????????????????????????????????????????????? 6分

        17.解:(1)正方形中,,

        ,因此,即菱形的邊長為

        中,,

        ,

        ,,

        ,即菱形是正方形.

        同理可以證明

        因此,即點邊上,同時可得

        從而.????????????????????????????????????????????????????????????????????????????????????????? 2分

        (2)作,為垂足,連結,

        ,

        ,

        中,,

        ,即無論菱形如何變化,點到直線的距離始終為定值2.

        因此.??????????????????????????????????????????????????????????????????????????? 6分

        (3)若,由,得,此時,在中,

        相應地,在中,,即點已經(jīng)不在邊上.

        故不可能有.???????????????????????????????????????????????????????????????????????????????????????????????? 9分

        另法:由于點在邊上,因此菱形的邊長至少為,

        當菱形的邊長為4時,點邊上且滿足,此時,當點逐漸向右運動至點時,的長(即菱形的邊長)將逐漸變大,最大值為

        此時,,故

        而函數(shù)的值隨著的增大而減小,

        因此,當時,取得最小值為

        又因為,所以,的面積不可能等于1.????????????????????? 9分

        18.

        19.證明:在等腰中,,

             ,.又,

             .????????????????????????????????????????????????????????????????????????? 3分

             

             .?????????????????? 5分

             又不平行,四邊形是梯形.??????????????????????????????????? 7分

             四邊形是等腰梯形.(理由:同一底上的兩底角相等的梯形是等腰梯形,或兩腰相等的梯形是等腰梯形)?????????????????????????????????????????????????????????????????????????????????????????????????????? 8分

         

        20.解:(1)在矩形中,,

        .……………………1分

            ,

            ,即

        同步練習冊答案