22 .在高度為2.8m的一面墻上.準(zhǔn)備開鑿一個(gè)矩形窗戶.現(xiàn)用9.5m長的鋁合金條制成如圖所示的窗框.問:窗戶的寬和高各是多少時(shí).其透光面積為3m2(鋁合金條的寬度忽略不計(jì))? 查看更多

 

題目列表(包括答案和解析)

(本小題10分)在平面直角坐標(biāo)系中,將直線l:沿x軸翻折,得到一條新直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將拋物線沿x軸平移,得到一條新拋物線與y軸交于點(diǎn)D,與直線AB交于點(diǎn)E、點(diǎn)F.
(Ⅰ)求直線AB的解析式;
(Ⅱ)若線段DF∥x軸,求拋物線的解析式;
(Ⅲ)在(2)的條件下,若點(diǎn)F在y軸右側(cè),過F作FH⊥x軸于點(diǎn)G,與直線l交于點(diǎn)H,一條直線m(m不過△AFH的頂點(diǎn))與AF交于點(diǎn)M,與FH交于點(diǎn)N,如果直線m既垂直于直線AB又平分△AFH的面積,求直線m的解析式.

查看答案和解析>>

(本小題10分)

1.(1)解不等式:2.(2)解方程:

 

查看答案和解析>>

(本小題10分)如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點(diǎn)A(0,2),B(4,2)C(6,0),解答下列問題:

(1)請?jiān)趫D中確定該圓弧所在圓心D點(diǎn)的位置,則D點(diǎn)坐標(biāo)為________ ;
(2)連結(jié)AD,CD,求⊙D的半徑(結(jié)果保留根號);
(3)求扇形DAC的面積. (結(jié)果保留π)

查看答案和解析>>

(本小題10分)在平面直角坐標(biāo)系中,將直線l:沿x軸翻折,得到一條新直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將拋物線沿x軸平移,得到一條新拋物線與y軸交于點(diǎn)D,與直線AB交于點(diǎn)E、點(diǎn)F.

(Ⅰ)求直線AB的解析式;

(Ⅱ)若線段DF∥x軸,求拋物線的解析式;

(Ⅲ)在(2)的條件下,若點(diǎn)F在y軸右側(cè),過F作FH⊥x軸于點(diǎn)G,與直線l交于點(diǎn)H,一條直線m(m不過△AFH的頂點(diǎn))與AF交于點(diǎn)M,與FH交于點(diǎn)N,如果直線m既垂直于直線AB又平分△AFH的面積,求直線m的解析式.

 

查看答案和解析>>

(本小題10分)我校數(shù)學(xué)教研組對2011年杭州市中考數(shù)學(xué)試題的部分選擇題作了錯題分析統(tǒng)計(jì),受污損的下表記錄了n位同學(xué)的錯題分布情況:

題號

1

2

3

4

5

6

7

8

答錯人數(shù)

9

10

6

6

 

 

18

23

已知這n人中,平均每題有12人答錯,同時(shí)第6題答錯的人數(shù)恰好是第5題答錯人數(shù)的2倍,且第2題有80%的同學(xué)答對。解答下面的問題:

1.(1)總共統(tǒng)計(jì)了多少人?

2.(2)第5,6兩題各有多少人答錯?

3.(3)將統(tǒng)計(jì)圖補(bǔ)充完整。

 

 

查看答案和解析>>

一、填空題:

160°.

2.答案不惟一,如:AE=CF,∠AEB=∠CFD,∠ ABE=∠CDF;

3.1;

4.4。

5.60

7.2-2     

8.15。

9.5

10.4

11.5

12. 2,3,n。

14.

 

15. (-8,0)。

 

16.6。

17. .平行四邊形。

18.60

19.4,12           

二、選擇題:

1.C

 

2.C

3.B

4.B

 

5.B

6.A

 

7.C。

 

8.B。

 

9.C

 

10.D

 

 

11.C。

 

12.B

13.B 

14.C 

15.D

16. C

17.C   

18.D    

19.D

20.C

21.D

22.D。

三、解答題:

11如圖答2,因?yàn)锳D∥BC,AB∥DC  ------------------------------------------------- 2分

所以四邊形ABCD為平行四邊形.---------------------------------------------------------------- 3分

分別過點(diǎn)B、D作BF⊥AD,DE⊥AB,垂足分別為點(diǎn)E、F.

則BE = CF.-------------------------------------------------------------------------------------------- 4分

因?yàn)椤螪AB =∠BAF,所以Rt△DAB≌Rt△BAF.--------------------------------------------- 5分

所以AD = AB.            

所以四邊形ABCD為菱形.-------------------------------------------------------------------------- 6分

(2存在最小值和最大值.-------------------------------------------------------------------------- 7分

① 當(dāng)∠DAB = 90°時(shí),菱形ABCD為正方形,周長最小值為8;---------------------------8分

② 當(dāng)AC為矩形紙片的對角線時(shí),設(shè)AB = x,如圖答3,在Rt△BCG中,

,.所以周長最大值為17.-------------------------------------------9分

          

 

 

                                                                                                 

 

 

 

 

 

 

 

 

  2.證明:  ∵EF垂直平分AC,∴EF⊥AC,且AO=CO-------------------------------1′       

              證得:△AOE≌△COF-----------------------------------------------------------3′

          證得:四邊形AECF是平行四邊形------------------------------------------------5′

       由AC⊥EF可知:四邊形AECF是菱形 -------------------------------------------6′

 

 

5.(本題滿分8分)

解:(1)方法一:如圖①

∵在 ABCD中,ADBC

∴∠DAB+∠ABC=180°                  ………………………1分

AE、BF分別平分∠DAB和∠ABC

∴∠DAB=2∠BAE,∠ABC=2∠ABF              ………………………2分

∴2∠BAE+2∠ABF=180°

即∠BAE+∠ABF=90°                 ………………………3分

∴∠AMB=90°

AEBF                                     …………………………4分

    <sub id="zd1q5"><i id="zd1q5"><menuitem id="zd1q5"></menuitem></i></sub>

        圖②

         

         

         

         

         

         

        方法二:如圖②,延長BC、AE相交于點(diǎn)P     

        ∵在ABCD中,AD∥BC

        ∴∠DAP=∠APB                                               …………………………1分

        ∵AE平分∠DAB

        ∴∠DAP=∠PAB                                               …………………………2分

        ∴∠APB=∠PAB

        ∴AB=BP                                                                   ………………………3分

        ∵BF平分∠ABP

        ∴:AP⊥BF

        即AE⊥BF.                                                            ………………………4分

        (2)方法一:線段DFCE是相等關(guān)系,即DF=CE     ………………5分

        ∵在ABCD中,CDAB

        ∴∠DEA=∠EAB

        又∵AE平分∠DAB

        ∴∠DAE=∠EAB

        ∴∠DEA=∠DAE

        DEAD                                         ………………………6分

        同理可得,CFBC                               ………………………7分

        又∵在ABCD中,ADBC

        DECF

        DEEFCFEF

        DFCE.                                         ………………………8分

        方法二:如右圖,延長BC、AE設(shè)交于點(diǎn)P,延長AD、BF相交于點(diǎn)O       …5分

        ∵在ABCD中,AD∥BC

        ∴∠DAP=∠APB                                                   

        ∵AE平分∠DAB

        ∴∠DAP=∠PAB                                                  

        ∴∠APB=∠PAB

        ∴BP=AB

        同理可得,AO=AB                 

            ∴AO=BP                                   ………………………6分

                ∵在ABCD中,AD=BC

                ∴OD=PC

         又∵在ABCD中,DC∥AB

               ∴△ODF∽△OAB,△PCE∽△PBA                  ………………………7分

               ∴

               ∴DF=CE.                                                                     ………………………8分

         

        6.。1)(2)略  。3)設(shè)BC=x,則DC=x  ,BD=,CF=(-1)x

        GD2=GE?GB=4-2      DC2+CF2=(2GD)2   即 x2+(-1)2x2=4(4-2

        (4-2)x2=4(4-2)    x2=4   正方形ABCD的面積是4個(gè)平方單位

         

         

        7.(本小題滿分5分)

        證明:∵  AB∥CD

        ∴                …………1分

        ∵ 

        ∴  △ABO≌△CDO                 …………3分

        ∴                      …………4分

        ∴  四邊形ABCD是平行四邊形       …………5分

         

         

         

         

         

        11.證明:(1)①在中,

        ,,,????????????????????????????????????????????????????????????????????????? 2分

        .????????????????????????????????????????????????????????????????????????????????????????????????? 3分

        .?????????????????????????????????????????????????????????????????????????????????????????????????? 4分

        ,

         

        12.(本題7分)

        解:(1)在梯形中,,

        ,,

        ,

        ,

        .?????????????????????????????????????????????????????????????????????????????????????????????????? 2分

        .???????????????????????????????????????????????????????????????????????????????????????????????????????????? 3分

        ,,

        .?????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

        的函數(shù)表達(dá)式是

        ;??????????????????????????????????????????????????????????????????????????????????????? 5分

        (2)

        .?????????????????????????????????????????????????????????????????????????????????????????????????????? 6分

        當(dāng)時(shí),有最大值,最大值為.??????????????????????????????????????????????????????????????????? 7分

         

         

         

        13.證明:菱形中,.???????????????????? 1分

        分別是的中點(diǎn),

        .?????????????????? 3分

        ,.????????????????? 5分

        .??????????????????????????????? 7分

        14.

        15.證明:四邊形是平行四邊形,,

        .??????????????????????????????????????????????????????????????????????????????????????????????????? 1分

        平分.????????????????????????????????????????????????????????????????? 2分

        .??????????????????????????????????????????????????????????????????????????????????????????????????? 3分

        .??????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

        ,.???????????????????????????????????????????????????????????????????????????????????? 5分

         

        16.解:(1)①40.?????????????????????????????????????????????????????????????????????????????????????????????????????? 2分

        ②0. ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

        (2)不合理.例如,對兩個(gè)相似而不全等的矩形來說,它們接近正方形的程度是相同的,但卻不相等.合理定義方法不唯一,如定義為越小,矩形越接近于正方形;越大,矩形與正方形的形狀差異越大;當(dāng)時(shí),矩形就變成了正方形.???????????????????????????????????????????????????????????????????????????????????????????????????????????????? 6分

        17.解:(1)正方形中,

        ,因此,即菱形的邊長為

        中,,

        ,

        ,

        ,即菱形是正方形.

        同理可以證明

        因此,即點(diǎn)邊上,同時(shí)可得,

        從而.????????????????????????????????????????????????????????????????????????????????????????? 2分

        (2)作為垂足,連結(jié)

        ,,

        ,

        中,,,

        ,即無論菱形如何變化,點(diǎn)到直線的距離始終為定值2.

        因此.??????????????????????????????????????????????????????????????????????????? 6分

        (3)若,由,得,此時(shí),在中,

        相應(yīng)地,在中,,即點(diǎn)已經(jīng)不在邊上.

        故不可能有.???????????????????????????????????????????????????????????????????????????????????????????????? 9分

        另法:由于點(diǎn)在邊上,因此菱形的邊長至少為,

        當(dāng)菱形的邊長為4時(shí),點(diǎn)邊上且滿足,此時(shí),當(dāng)點(diǎn)逐漸向右運(yùn)動至點(diǎn)時(shí),的長(即菱形的邊長)將逐漸變大,最大值為

        此時(shí),,故

        而函數(shù)的值隨著的增大而減小,

        因此,當(dāng)時(shí),取得最小值為

        又因?yàn)?sub>,所以,的面積不可能等于1.????????????????????? 9分

        18.

        19.證明:在等腰中,,

             ,,.又,

             .????????????????????????????????????????????????????????????????????????? 3分

             

             .?????????????????? 5分

             又不平行,四邊形是梯形.??????????????????????????????????? 7分

             四邊形是等腰梯形.(理由:同一底上的兩底角相等的梯形是等腰梯形,或兩腰相等的梯形是等腰梯形)?????????????????????????????????????????????????????????????????????????????????????????????????????? 8分

         

        20.解:(1)在矩形中,,

        .……………………1分

            

            ,即

        同步練習(xí)冊答案