(2)若點(diǎn)是(1)中軌跡E上的動(dòng)點(diǎn).點(diǎn)是定點(diǎn).是否存在垂直軸的直線(xiàn).使得直線(xiàn)被以線(xiàn)段為直徑的圓截得的弦長(zhǎng)恒為定值?若存在.用表示直線(xiàn)的方程,若不存在.說(shuō)明理由. 查看更多

 

題目列表(包括答案和解析)

設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,
3
2
)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線(xiàn)段F1K的中點(diǎn)的軌跡方程.

查看答案和解析>>

設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,
3
2
)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線(xiàn)段F1K的中點(diǎn)的軌跡方程;
(3)若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線(xiàn)PM、PN的斜率都存在,并記為kPM、kPN時(shí).求證:kPM•kPN是與點(diǎn)P位置無(wú)關(guān)的定值.

查看答案和解析>>

設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,
3
2
)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線(xiàn)段F1K的中點(diǎn)的軌跡方程;
(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線(xiàn)PM、PN的斜率都存在,并記為kPM、kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.試對(duì)雙曲線(xiàn)
x2
a2
-
y2
b2
=1
寫(xiě)出具有類(lèi)似特性的性質(zhì),并加以證明.

查看答案和解析>>

設(shè)F1F2分別為橢圓C =1(ab>0)的左、右兩個(gè)焦點(diǎn).

(1)若橢圓C上的點(diǎn)A(1,)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);

(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線(xiàn)段F1K的中點(diǎn)的軌跡方程;

查看答案和解析>>

設(shè)F1、F2分別為橢圓C: =1(a>b>0)的左、右兩個(gè)焦 點(diǎn)。(1)若橢圓C上的點(diǎn)A(1,)到F1、F2兩點(diǎn)的 距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);

(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線(xiàn)段F1K的中點(diǎn)的軌跡方程.

 

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依題意得:

所以:,……4分

      20090508

      (2)設(shè),則,

      由正弦定理:,

      所以?xún)蓚(gè)正三角形的面積和,…………8分

      ……………10分

      ,

      所以:………………………………………………………………12分

      18.解:(1);……………………6分

      (2)消費(fèi)總額為1500元的概率是:……………………7分

      消費(fèi)總額為1400元的概率是:………8分

      消費(fèi)總額為1300元的概率是:

      ,…11分

      所以消費(fèi)總額大于或等于1300元的概率是;……………………12分

      19.(1)證明:因?yàn)?sub>,所以平面,

      又因?yàn)?sub>,

      平面

      平面平面;…………………4分

      (2)因?yàn)?sub>,所以平面,所以點(diǎn)到平面的距離等于點(diǎn)E到平面的距離,

      過(guò)點(diǎn)E作EF垂直CD且交于點(diǎn)F,因?yàn)槠矫?sub>平面,所以平面,

      所以的長(zhǎng)為所求,………………………………………………………………………6分

      因?yàn)?sub>,所以為二面角的平面角,,

      =1,

      點(diǎn)到平面的距離等于1;…………………………………………………………8分

      (3)連接,由平面,,得到

      所以是二面角的平面角,

      ,…………………………………………………………………11分

      二面角大小是!12分

      20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

      ,

      解得,所以,…………………3分

      所以,

      ,

      所以;…………………………………………………………………6分

      (2),因?yàn)?sub>,所以數(shù)列是遞增數(shù)列,…8分

      當(dāng)且僅當(dāng)時(shí),取得最小值,

      則:,

      所以,即的取值范圍是!12分

      21.解:(1)設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

      因?yàn)?sub>,所以,得到:,注意到不共線(xiàn),所以軌跡方程為;…………………………………5分

      (2)設(shè)點(diǎn)是軌跡C上的任意一點(diǎn),則以為直徑的圓的圓心為,

      假設(shè)滿(mǎn)足條件的直線(xiàn)存在,設(shè)其方程為,直線(xiàn)被圓截得的弦為,

       

      …………………………………………7分

      弦長(zhǎng)為定值,則,即

      此時(shí),……………………………………………………9分

      所以當(dāng)時(shí),存在直線(xiàn),截得的弦長(zhǎng)為

          當(dāng)時(shí),不存在滿(mǎn)足條件的直線(xiàn)。……………………………………………12分

      22.解:(1),

      ,……2分

      ,

      因?yàn)楫?dāng)時(shí)取得極大值,所以,

      所以的取值范圍是:;………………………………………………………4分

      (2)由下表:

      0

      0

      遞增

      極大值

      遞減

      極小值

      遞增

      ………………………7分

      畫(huà)出的簡(jiǎn)圖:

      依題意得:,

      解得:,

      所以函數(shù)的解析式是:

      ;……9分

      (3)對(duì)任意的實(shí)數(shù)都有

      依題意有:函數(shù)在區(qū)間

      上的最大值與最小值的差不大于,

      ………10分

      在區(qū)間上有:

      ,

      的最大值是

      的最小值是,……13分

      所以

      的最小值是!14分

       

       


      同步練習(xí)冊(cè)答案