.其中為大于0的常數(shù). 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=sin(ωx+
π
6
)+sin(ωx-
π
6
)+cosωx
(其中ω為大于0的常數(shù)),若函數(shù)f(x)在[-
π
2
π
2
]
上是增函數(shù),則ω的取值范圍是
(0,
2
3
]
(0,
2
3
]

查看答案和解析>>

為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層(即x=0時(shí)),每年能源消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.

(1)求k的值;

(2)求f(x)的表達(dá)式;

(3)利用“函數(shù)(其中為大于0的常數(shù)),在上是減函數(shù),在上是增函數(shù)”這一性質(zhì),求隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求出這個(gè)最小值.

 

查看答案和解析>>

已知函數(shù)(其中ω為大于0的常數(shù)),若函數(shù)上是增函數(shù),則ω的取值范圍是   

查看答案和解析>>

己知集合M={(x,y)|x>0,y>0,x+y=k},其中k為大于0的常數(shù).
(Ⅰ)對任意(x,y)∈M,t=xy,求t的取值范圍;
(Ⅱ)求證:當(dāng)k≥1時(shí),不等式(
1
x
-x)(
1
y
-y)≤(
k
2
-
2
k
)2
對任意(x,y)∈M恒成立;
(Ⅲ)求使不等式(
1
x
-x)(
1
y
-y)≥(
k
2
-
2
k
)2
對任意(x,y)∈M恒成立的k的范圍.

查看答案和解析>>

為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=
k
3x+5
(0≤x≤10)
,若不建隔熱層(即x=0時(shí)),每年能源消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值;
(2)求f(x)的表達(dá)式;
(3)利用“函數(shù)y=x+
a
x
(其中a為大于0的常數(shù)),在(0,
a
]
上是減函數(shù),在[
a
,+∞)
上是增函數(shù)”這一性質(zhì),求隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求出這個(gè)最小值.

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依題意得:

所以:,……4分

    1. <small id="ne0ji"></small>

        20090508

        (2)設(shè),則,

        由正弦定理:,

        所以兩個(gè)正三角形的面積和,…………8分

        ……………10分

        ,,

        所以:………………………………………………………………12分

        18.解:(1);……………………6分

        (2)消費(fèi)總額為1500元的概率是:……………………7分

        消費(fèi)總額為1400元的概率是:………8分

        消費(fèi)總額為1300元的概率是:

        ,…11分

        所以消費(fèi)總額大于或等于1300元的概率是;……………………12分

        19.(1)證明:因?yàn)?sub>,所以平面

        又因?yàn)?sub>,

        平面,

        平面平面;…………………4分

        (2)因?yàn)?sub>,所以平面,所以點(diǎn)到平面的距離等于點(diǎn)E到平面的距離,

        過點(diǎn)E作EF垂直CD且交于點(diǎn)F,因?yàn)槠矫?sub>平面,所以平面

        所以的長為所求,………………………………………………………………………6分

        因?yàn)?sub>,所以為二面角的平面角,,

        =1,

        點(diǎn)到平面的距離等于1;…………………………………………………………8分

        (3)連接,由平面,,得到,

        所以是二面角的平面角,

        ,…………………………………………………………………11分

        二面角大小是!12分

        20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

        ,

        解得,所以,…………………3分

        所以

        ,

        所以;…………………………………………………………………6分

        (2),因?yàn)?sub>,所以數(shù)列是遞增數(shù)列,…8分

        當(dāng)且僅當(dāng)時(shí),取得最小值,

        則:,

        所以,即的取值范圍是。………………………………………12分

        21.解:(1)設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

        因?yàn)?sub>,所以,得到:,注意到不共線,所以軌跡方程為;…………………………………5分

        (2)設(shè)點(diǎn)是軌跡C上的任意一點(diǎn),則以為直徑的圓的圓心為,

        假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為,

         

        …………………………………………7分

        弦長為定值,則,即,

        此時(shí),……………………………………………………9分

        所以當(dāng)時(shí),存在直線,截得的弦長為,

            當(dāng)時(shí),不存在滿足條件的直線!12分

        22.解:(1)

        ,……2分

        ,

        因?yàn)楫?dāng)時(shí)取得極大值,所以,

        所以的取值范圍是:;………………………………………………………4分

        (2)由下表:

        0

        0

        遞增

        極大值

        遞減

        極小值

        遞增

        ………………………7分

        畫出的簡圖:

        依題意得:,

        解得:,

        所以函數(shù)的解析式是:

        ;……9分

        (3)對任意的實(shí)數(shù)都有

        ,

        依題意有:函數(shù)在區(qū)間

        上的最大值與最小值的差不大于,

        ………10分

        在區(qū)間上有:

        ,

        的最大值是

        的最小值是,……13分

        所以

        的最小值是!14分

         

         


        同步練習(xí)冊答案