②如果是異面直線.那么不與相交.③若.∥.且.則∥且∥.其中真命題的個數(shù)是 A.0 B.3 C.2 D.1 查看更多

 

題目列表(包括答案和解析)

 已知是平面,、是直線,給出下列命題:

①若,則.              

②如果是異面直線,那么不與相交.

③若,,且,則

其中真命題的個數(shù)是  (   )

A.0           B.1         C.2            D.3

 

查看答案和解析>>

 已知是平面,是直線,給出下列命題

①若,,則

②如果,,則

③如果,是異面直線,那么不與相交。

④若,,則

其中真命題的個數(shù)是

A、1            B、2        C、3        D、4

 

查看答案和解析>>

已知、是平面,、是直線,給出下列命題

①若,則.    

②如果、n是異面直線,那么不與相交.

③若,且,則

其中真命題的個數(shù)是

A、0           B、3            C、2           D、1

查看答案和解析>>

6、已知α,β是平面,m,n是直線,給出下列命題
①若m⊥α,m?β,則α⊥β.
②若m?α,n?α,m∥β,n∥β,則α∥β.
③如果m?α,n?α,m、n是異面直線,那么n與α相交.
④若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β.
其中正確命題的個數(shù)是( 。

查看答案和解析>>

已知α、β是不同的平面,m、n是不同的直線,給出下列命題:

①若

②若

③如果,m、n是異面直線,那么n與α相交。

④若,則n//α且n//β。

其中正確命題的個數(shù)是(   )

A.4                B.3                C.2                D.1

 

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依題意得:

所以:,……4分

      20090508

      (2)設,則

      由正弦定理:,

      所以兩個正三角形的面積和,…………8分

      ……………10分

      ,

      所以:………………………………………………………………12分

      18.解:(1);……………………6分

      (2)消費總額為1500元的概率是:……………………7分

      消費總額為1400元的概率是:………8分

      消費總額為1300元的概率是:

      ,…11分

      所以消費總額大于或等于1300元的概率是;……………………12分

      19.(1)證明:因為,所以平面

      又因為,

      平面

      平面平面;…………………4分

      (2)因為,所以平面,所以點到平面的距離等于點E到平面的距離,

      過點E作EF垂直CD且交于點F,因為平面平面,所以平面,

      所以的長為所求,………………………………………………………………………6分

      因為,所以為二面角的平面角,,

      =1,

      到平面的距離等于1;…………………………………………………………8分

      (3)連接,由平面,,得到,

      所以是二面角的平面角,

      ,…………………………………………………………………11分

      二面角大小是。……12分

      20.解:(1)設等差數(shù)列的公差為,依題意得:

      解得,所以,…………………3分

      所以,

      所以;…………………………………………………………………6分

      (2),因為,所以數(shù)列是遞增數(shù)列,…8分

      當且僅當時,取得最小值,

      則:,

      所以,即的取值范圍是!12分

      21.解:(1)設點的坐標為,則點的坐標為,點的坐標為,

      因為,所以,得到:,注意到不共線,所以軌跡方程為;…………………………………5分

      (2)設點是軌跡C上的任意一點,則以為直徑的圓的圓心為

      假設滿足條件的直線存在,設其方程為,直線被圓截得的弦為

       

      …………………………………………7分

      弦長為定值,則,即,

      此時,……………………………………………………9分

      所以當時,存在直線,截得的弦長為,

          當時,不存在滿足條件的直線!12分

      22.解:(1)

      ,……2分

      ,

      因為當時取得極大值,所以,

      所以的取值范圍是:;………………………………………………………4分

      (2)由下表:

      0

      0

      遞增

      極大值

      遞減

      極小值

      遞增

      ………………………7分

      畫出的簡圖:

      依題意得:,

      解得:

      所以函數(shù)的解析式是:

      ;……9分

      (3)對任意的實數(shù)都有

      ,

      依題意有:函數(shù)在區(qū)間

      上的最大值與最小值的差不大于,

      ………10分

      在區(qū)間上有:

      ,

      的最大值是

      的最小值是,……13分

      所以

      的最小值是。………………………………………14分

       

       


      同步練習冊答案