可求得----------7分(注:也可用數(shù)學(xué)歸納法證明) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0)的對稱中心為M(x0,y0),記函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),f′(x)的導(dǎo)函數(shù)為f″(x),則有f″(x0)=0.若函數(shù)f(x)=x3-3x2,則可求得f(
1
2013
)+f(
2
2013
)+…f(
4024
2013
)+f(
4025
2013
)
=( 。

查看答案和解析>>

已知問題:上海迪斯尼工程某 施工工地上有一堵墻,工程隊欲將長為4a(a>0)的建筑護(hù)欄(厚度不計)借助這堵墻圍成矩形的施工區(qū)域(如圖1),求所得區(qū)域的最大面積.解決這一問題的一種方法是:作出護(hù)欄關(guān)于墻面的軸對稱圖形(如圖2),則原問題轉(zhuǎn)化為“已知矩形周長為8a,求面積的最大值”從而輕松獲解.參考這種借助對稱圖形解決問題的方法,對于下列情形:已知兩堵墻互相垂直圍成“L”形,工程隊將長為4a(a>0)的建筑護(hù)欄借助墻角圍成四邊形的施工區(qū)域(如圖3),可求得所圍區(qū)域的最大面積為
2(
2
+1)a2
2(
2
+1)a2

查看答案和解析>>

(2012•泉州模擬)定義域為D的函數(shù)y=f(x),若存在常數(shù)a,b,使得對于任意x1,x2∈D,當(dāng)x1+x2=2a時,總有f(x1)+f(x2)=2b,則稱點(a,b)為函數(shù)y=f(x)圖象的對稱中心.已知函數(shù)f(x)=x3-3x2圖象的對稱中心的橫坐標(biāo)為1,則可求得:f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=
-8046
-8046

查看答案和解析>>

(2012•湘潭三模)若{an}滿足a1=1,an+an+1=(
14
)n
(n∈N*),設(shè)Sn=a1+4a2+42a3+…+4n-1an5S2-42a2=
2
2
;類比課本中推導(dǎo)等比數(shù)列前n項和公式的方法,可求得5Sn-4nan=
n
n

查看答案和解析>>

若數(shù)列{an}滿足:a1=m1,a2=m2,an+2=pan+1+qan(p,q是常數(shù)),則稱數(shù)列{an}為二階線性遞推數(shù)列,且定義方程x2=px+q為數(shù)列{an}的特征方程,方程的根稱為特征根; 數(shù)列{an}的通項公式an均可用特征根求得:
①若方程x2=px+q有兩相異實根α,β,則數(shù)列通項可以寫成an=c1αn+c2βn,(其中c1,c2是待定常數(shù));
②若方程x2=px+q有兩相同實根α,則數(shù)列通項可以寫成an=(c1+nc2)αn,(其中c1,c2是待定常數(shù));
再利用a1=m1,a2=m2,可求得c1,c2,進(jìn)而求得an.根據(jù)上述結(jié)論求下列問題:
(1)當(dāng)a1=5,a2=13,an+2=5an+1-6an(n∈N*)時,求數(shù)列{an}的通項公式;
(2)當(dāng)a1=1,a2=11,an+2=2an+1+3an+4(n∈N*)時,求數(shù)列{an}的通項公式;
(3)當(dāng)a1=1,a2=1,an+2=an+1+an(n∈N*)時,記Sn=a1Cn1+a2Cn2+…+anCnn,若Sn能被數(shù)8整除,求所有滿足條件的正整數(shù)n的取值集合.

查看答案和解析>>


同步練習(xí)冊答案