已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0)的對稱中心為M(x0,y0),記函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),f′(x)的導(dǎo)函數(shù)為f″(x),則有f″(x0)=0.若函數(shù)f(x)=x3-3x2,則可求得f(
1
2013
)+f(
2
2013
)+…f(
4024
2013
)+f(
4025
2013
)
=( 。
分析:由題意對已知函數(shù)求兩次導(dǎo)數(shù)可得圖象關(guān)于點(1,-2)對稱,即f(x)+f(2-x)=-4,而要求的式子可用倒序相加法求解,共有2011對-4和一個f(1)=-2,可得答案.
解答:解:由題意f(x)=x3-3x2,則f′(x)=3x2-6x,f″(x)=6x-6,
由f″(x0)=0得x0=1,而f(1)=-2,故函數(shù)f(x)=x3-3x2關(guān)于點(1,-2)對稱,即f(x)+f(2-x)=-4.
所以f(
1
2013
)+f(
4025
2013
)=-4
,…f(
2012
2013
)+f(
2014
2013
)=-4
,f(
2013
2013
)=f(1)=-2
,
所以f(
1
2013
)+f(
2
2013
)+…f(
4024
2013
)+f(
4025
2013
)
=-4×2012+(-2)=-8050,
故選D.
點評:本題主要考查導(dǎo)數(shù)的基本運算,利用條件求出函數(shù)的對稱中心是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案