題目列表(包括答案和解析)
已知數(shù)列的通項(xiàng)公式為,其中是常數(shù),且.
(1)數(shù)列是否一定是等差數(shù)列?如果是,其首項(xiàng)與公差是什么?并證明,如果不是說明理由.
(2)設(shè)數(shù)列的前項(xiàng)和為,且,,試確定的公式.
已知數(shù)列的通項(xiàng)公式為,數(shù)列的前項(xiàng)和為,且滿足.
(1)求的通項(xiàng)公式;
(2)在中是否存在使得是中的項(xiàng),若存在,請(qǐng)寫出滿足題意的其中一項(xiàng);若不存在,請(qǐng)說明理由.
(16分)已知數(shù)列的通項(xiàng)公式為.
(1)若成等比數(shù)列,求的值;
(2)是否存在,使得成等差數(shù)列,若存在,求出常數(shù)的值;若不存在,請(qǐng)說明理由;
(3)求證:數(shù)列中的任意一項(xiàng)總可以表示成數(shù)列中其它兩項(xiàng)之積.
1.(文)A(理)C 2.(文)A(理)B 3.C 4.(文)D(理)B
5.(文)D。ɡ恚〤 6.A 7.C 8.B 9.A 10.D 11.A 12.C
13.33 14.7 15.18
16.只要寫出
17.解析:
.
18.解析:(1)由,,成等差數(shù)列,得,
若q=1,則,,
由≠0 得 ,與題意不符,所以q≠1.
由,得.
整理,得,由q≠0,1,得.
。2)由(1)知:,
,所以,,成等差數(shù)列.
19.解析:(1)記“摸出兩個(gè)球,兩球恰好顏色不同”為A,摸出兩個(gè)球共有方法種,
其中,兩球一白一黑有種.
∴ .
(2)法一:記摸出一球,放回后再摸出一個(gè)球“兩球恰好顏色不同”為B,摸出一球得白球的概率為,摸出一球得黑球的概率為,
∴ P(B)=0.4×0.6+0.6+×0.4=0.48
法二:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”.
∴
∴ “有放回摸兩次,顏色不同”的概率為.
20.解析:(甲)(1)∵ △為以點(diǎn)M為直角頂點(diǎn)的等腰直角三角形,∴ 且.
∵ 正三棱柱, ∴ 底面ABC.
∴ 在底面內(nèi)的射影為CM,AM⊥CM.
∵ 底面ABC為邊長(zhǎng)為a的正三角形, ∴ 點(diǎn)M為BC邊的中點(diǎn).
。2)過點(diǎn)C作CH⊥,由(1)知AM⊥且AM⊥CM,
∴ AM⊥平面 ∵ CH在平面內(nèi), ∴ CH⊥AM,
∴ CH⊥平面,由(1)知,,且.
∴ . ∴ .
∴ 點(diǎn)C到平面的距離為底面邊長(zhǎng)為.
。3)過點(diǎn)C作CI⊥于I,連HI, ∵ CH⊥平面,
∴ HI為CI在平面內(nèi)的射影,
∴ HI⊥,∠CIH是二面角的平面角.
在直角三角形中,,
,
∴ ∠CIH=45°, ∴ 二面角的大小為45°
(乙)解:(1)以B為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.
∵ AC=
∴ .
∴ B(0,0,0),C(0,,0),A(,0,0),
(,0,
∴ ,,,,,,
∴ ,,,,,.
∴ ,, ∴ ,
∴ . 故BE與所成的角為.
。2)假設(shè)存在點(diǎn)F,要使CF⊥平面,只要且.
不妨設(shè)AF=b,則F(,0,b),,,,,0,,,,, ∵ , ∴ 恒成立.
或,
故當(dāng)或
21.解析:(1)法一:l:,
解得,. ∵ 、、成等比數(shù)列,
∴ , ∴ , ,,,,
∴ ,. ∴
法二:同上得,.
∴ PA⊥x軸.. ∴ .
。2) ∴ .
即 , ∵ ,
∴ ,即 ,. ∴ ,即 .
22.解析:(1). 又c<b<1,
故 方程f(x)+1=0有實(shí)根,
即有實(shí)根,故△=
即或
又c<b<1,得-3<c≤-1,由知.
。2),.
∴ c<m<1 ∴ .
∴ . ∴ 的符號(hào)為正.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com