已知數(shù)列的通項(xiàng)公式為,其中是常數(shù),且.
(1)數(shù)列是否一定是等差數(shù)列?如果是,其首項(xiàng)與公差是什么?并證明,如果不是說明理由.
(2)設(shè)數(shù)列的前項(xiàng)和為,且,,試確定的公式.
(1)這個(gè)數(shù)列是等差數(shù)列,其首項(xiàng)是,公差是;(2).
解析試題分析:(1)由通項(xiàng)公式,計(jì)算,若是與無關(guān)的常數(shù),這個(gè)常數(shù)就是公差,令n=1,即可求出首項(xiàng),若不是常數(shù),就不是等差數(shù)列;(2)由(1)知數(shù)列是等差數(shù)列,有數(shù)列前n項(xiàng)和公式,即可列出關(guān)于,解出,即可寫出數(shù)列的通項(xiàng)公式.
試題解析:(1)因?yàn)?
它是一個(gè)與無關(guān)的常數(shù),所以是等差數(shù)列,且公差為.
在通項(xiàng)公式中令,得
所以這個(gè)等差數(shù)列的首項(xiàng)是,公差是
(2)由(1)知是等差數(shù)列,,,將它們代入公式
得到 所
考點(diǎn):等差數(shù)列定義;等差數(shù)列通項(xiàng)公式;等差數(shù)列前n項(xiàng)和公式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是等差數(shù)列,,數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)記,若對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知公差不為零的等差數(shù)列,滿足且,,成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列前項(xiàng)的和為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}滿足a1>0,an+1=2-,。
(1)若a1,a2,a3成等比數(shù)列,求a1的值;
(2)是否存在a1,使數(shù)列{an}為等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正項(xiàng)等差數(shù)列的前n項(xiàng)和為,若,且,,成等比數(shù)列,
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前n項(xiàng)和為,且滿足條件
(1)求數(shù)列的通項(xiàng)公式;
(2)令,若對(duì)任意正整數(shù),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列滿足:,且、、成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式.
(2)記為數(shù)列的前項(xiàng)和,是否存在正整數(shù),使得若存在,求的最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知函數(shù).項(xiàng)數(shù)為27的等差數(shù)列滿足,且公差.若,則當(dāng)=____________是,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com