如圖.直二面角D―AB―E中.四邊形ABCD是邊長為2的正方形.AE=EB.F為CE上的點,且BF⊥平面ACE.(1)求證:AE⊥平面BCE,(2)求二面角B―AC―E的正弦值,(3)求點D到平面ACE的距離. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)

如圖,直二面角中,四邊形是邊長為2的正方形,為CE上的點,且平面

(1)求證平面;

(2)求二面角的大。

查看答案和解析>>

(本小題滿分13分)

如圖,直二面角中,四邊形是邊長為2的正方形,為CE上的點,且平面

(1)求證平面;

(2)求二面角的大小.

查看答案和解析>>

(本小題滿分13分)如圖,直三棱柱A1B1C1—ABC中,C1C=CB=CA=2,AC⊥CB. D、E分別為棱C1C、B1C1的中點.

(1)求二面角B—A1D—A的平面角余弦值;

(2)在線段AC上是否存在一點F,使得EF⊥平面A1BD?

若存在,確定其位置并證明結(jié)論;若不存在,說明理由.

查看答案和解析>>

(本小題滿分13分)

如圖,直三棱柱A1B1C1-ABC中,C1C=CB=CA=2,ACCBD、E分別為棱C1C、B1C1的中點.

(Ⅰ)求A1B與平面A1C1CA所成角的大小;

(Ⅱ)求二面角B-A1D-A的大。

(Ⅲ)試在線段AC上確定一點F,使得EF⊥平面A1BD

 

查看答案和解析>>

(本小題滿分13分)
如圖,直三棱柱A1B1C1-ABC中,C1C=CB=CA=2,ACCBD、E分別為棱C1C、B1C1的中點.
(Ⅰ)求A1B與平面A1C1CA所成角的大。
(Ⅱ)求二面角B-A1D-A的大;
(Ⅲ)試在線段AC上確定一點F,使得EF⊥平面A1BD

查看答案和解析>>

一. 單項選擇題

題號

1

2

3

4

5

6

7

8

9

10

答案

D

A

C

D

B

D

A

B

D

C

二.填空題

11、         12、25           13、         14、

15、29π    

三、解答題:

16、解:(1)

                =…………….4分

的最小正周期為           ……………5分

的對稱中心為      …………….6分

(2)   

 ……………..8分

 

      由     ……………10分   

                     ……………….12分

17、解:(1)五項指標(biāo)檢測相當(dāng)于5次獨立重復(fù)試驗,當(dāng)有二項及二項以上不合格時,該批食品不能出廠,故不能出廠的概率為:

        ……………………………….4分

(2)若須五項全部檢測完畢,才能確定能否出廠,則相當(dāng)于前四項檢測中恰有一項不合格的情形,故所求概率為:

   …………………………………..8分

        (3)由(1)知該批食品能出廠的概率為0.74不能出廠的概率為0.26

          故該廠生產(chǎn)一批食品獲利的分布列為

10000

-5000

0.74

0.26

                                                      ….………….10分

獲利的期望為 …………..12分

18、解:(1)由已知

   …………2分

    ∴             ……4分

即所求曲線方程是:                           …………6分

(2)由(1)求得點M(0,1)。顯然直線l與x軸不垂直。

故可設(shè)直線l的方程為y=kx+1 ,設(shè)M, N      …………8分

  消去y得:  解得  

解得:k=±1  ………………11分                             …………12分

∴所求直線的方程為                …………14分

19, 解:解法一:(1)∵BF⊥平面ACE。  ∴BF⊥AF

∵二面角D―AB―E為直二面角。且CB⊥AB。

∴CB⊥平面ABE   ∴CB⊥AE   ∴AE⊥平面BCE           ……………4分

(2)連結(jié)BD交AC交于G,連結(jié)FG

∵正方形ABCD邊長為2。∴BG⊥AC  BG=

∵BF⊥平面ACE。  由三垂線定理的逆定理得

FG⊥AC。  ∴∠BGF是二面B―AC―E的平面角              …………7分

由(1)和AE⊥平面BCE

又∵AE=EB

∴在等腰直角三角形AEB中,BE=

又∵Rt△BCE中,

  ∴Rt△BFG中

∴二面角B―AC―E的正弦值等于                        ……………10分

(3)過點E作ED⊥AB交AB于點O,  OE=1

∵二面角D―AB―E為直二面角    ∴EO⊥平面ABCD

設(shè)點D到平面ACE的距離為h。   ∵VD-ACE=VE-ACD

即點D到平面ACE的距離為                          ………………14分

 

20、解:(1)由 有唯一解

  

                                 …………4分

(2)由                 …………6分

  

數(shù)列 是以首項為,公差為的等差數(shù)列          …………8 分

                 ………10分

(3)由       …………12分

=

              

              

                                              …………14分

21、解:2.解:(Ⅰ)由條件得矩陣,

它的特征值為,對應(yīng)的特征向量為;

(Ⅱ),橢圓的作用下的新曲線的方程為.(7分)

3.(坐標(biāo)系與參數(shù)方程)求直線)被曲線所截的弦長,將方程,分別化為普通方程:

,………(4分)

……(7分)

 

 

 

 

 


同步練習(xí)冊答案