題目列表(包括答案和解析)
已知圓:.
(1)直線過點,且與圓交于、兩點,若,求直線的方程;
(2)過圓上一動點作平行于軸的直線,設與軸的交點為,若向量,求動點的軌跡方程,并說明此軌跡是什么曲線.
已知圓:.
(1)直線過點,且與圓交于、兩點,若,求直線的方程;
(2)過圓上一動點作平行于軸的直線,設與軸的交點為,若向量,求動點的軌跡方程,并說明此軌跡是什么曲線.
已知圓:.
(1)直線過點,且與圓交于、兩點,若,求直線的方程;
(2)過圓上一動點作平行于軸的直線,設與軸的交點為,若向量,求動點的軌跡方程.
已知圓方程為:.
(1)直線過點,且與圓交于、兩點,若,求直線的方程;
(2)過圓上一動點作平行于軸的直線,設與軸的交點為,若向量,求動點的軌跡方程,并說明此軌跡是什么曲線.已知圓方程為:.
(1)直線過點,且與圓交于、兩點,若,求直線的方程;
(2)過圓上一動點作平行于軸的直線,設與軸的交點為,若向量,求動點的軌跡方程,并說明此軌跡是什么曲線.
一、選擇題(每小題5分,共40分)
題號
1
2
3
4
5
6
7
8
答案
A
A
C
D
C
A
B
D
二、填空題(每小題5分,共30分)
9.84; 10.; 11.45; 12. -6; 13.; 14.; 15.3
三、解答題(共80分.解答題應寫出推理、演算步驟)
16. 解:(1)
則的最小正周期, ……………………………4分
且當時單調遞增.
即為的單調遞增區(qū)間(寫成開區(qū)間不
扣分).…………6分
(2)當時,
當,即時.
所以. ……………9分
為的對稱軸. ……12分
17. 解:(1)依題意,的可能取值為1,0,-1 ………1分
的分布列為 …4分
1
0
p
==…………6分
(2)設表示10萬元投資乙項目的收益,則的分布列為……8分
2
…………10分
依題意要求… 11分
∴………12分
注:只寫出扣1分
18. 解:(1)①當直線垂直于軸時,則此時直線方程為,與圓的兩個交點坐標為和,其距離為 滿足題意 ………1分
②若直線不垂直于軸,設其方程為,即
設圓心到此直線的距離為,則,得 …………3分
∴,,
故所求直線方程為
綜上所述,所求直線為或 …………7分
(2)設點的坐標為(),點坐標為
則點坐標是 …………9分
∵,
∴ 即, …………11分
又∵,∴
∴點的軌跡方程是, …………13分
軌跡是一個焦點在軸上的橢圓,除去短軸端點。 …………14分
19.解一:(1)證明:連結AD1,由長方體的性質可知:
AE⊥平面AD1,∴AD1是ED1在
平面AD1內的射影。又∵AD=AA1=1,
∴AD1⊥A1D
∴D1E⊥A1D1(三垂線定理) 4分
(2)設AB=x,∵四邊形ADD1A是正方形,
∴小螞蟻從點A沿長方體的表面爬到
點C1可能有兩種途徑,如圖甲的最短路程為
如圖乙的最短路程為
………………9分
(3)假設存在,平面DEC的法向量,
設平面D1EC的法向量,則
…………………12分
由題意得:
解得:(舍去)
………14分
20. 解:(1)當.…(1分)
……(3分)
∴的單調遞增區(qū)間為(0,1),單調遞減區(qū)間為:,.
……(4分)
(2)切線的斜率為,
∴ 切線方程為.……(6分)
所求封閉圖形面積為
.
……(8分)
(3), ……(9分)
令. ……(10分)
列表如下:
x
(-∞,0)
0
(0,2-a)
2-a
(2-a,+ ∞)
-
0
+
0
-
ㄋ
極小
ㄊ
極大
ㄋ
由表可知,. ……(12分)
設,
∴上是增函數,……(13分)
∴ ,即,
∴不存在實數a,使極大值為3. ……(14)
21.解:(1)由 而
解得A=1……………………………………2分
(2)令
當n=1時,a1=S1=2,當n≥2時,an=Sn-Sn-1=n2+n
綜合之:an=2n…………………………………………6分
由題意
∴數列{cn+1}是為公比,以為首項的等比數列。
………………………9分
(3)當
………………………11分
當
………13分
綜合之:
………14分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com