如圖.直線相交于點P.直線l1與x軸交于點P1.過點P1作x軸的垂線交直線l2于點Q1.過點Q1作y軸的垂線交直線l1于點P2.過點P2作x軸的垂線交直線l2于點Q2.-.這樣一直作下去.可得到一系列點P1.Q1.P2.Q2.-.點Pn的橫坐標構(gòu)成數(shù)列 查看更多

 

題目列表(包括答案和解析)

如圖,直線相交于點P.直線l1x軸交于點P1,過點P1x軸的垂線交直線l2于點Q1,過點Q1y軸的垂線交直線l1于點P2,過點P2x軸的垂線交直線l2于點Q2,,這樣一直作下去,可得到一系列點P1、Q1P2、Q2,,點Pnn=12,)的橫坐標構(gòu)成數(shù)列

)證明

)求數(shù)列的通項公式;

)比較的大小.

 

查看答案和解析>>

精英家教網(wǎng)如圖,直線l1:y=kx(k>0)與直線l2:y=-kx之間的陰影區(qū)域(不含邊界)記為W,其左半部分記為W1,右半部分記為W2
(Ⅰ)分別用不等式組表示W(wǎng)1和W2
(Ⅱ)若區(qū)域W中的動點P(x,y)到l1,l2的距離之積等于d2,求點P的軌跡C的方程;
(Ⅲ)設不過原點O的直線l與(Ⅱ)中的曲線C相交于M1,M2兩點,且與l1,l2分別交于M3,M4兩點.求證△OM1M2的重心與△OM3M4的重心重合.

查看答案和解析>>

如圖,直線l1:y=kx(k>0)與直線l2:y=-kx之間的陰影區(qū)域(不含邊界)記為W,其左半部分記為W1,右半部分記為W2,
(Ⅰ)分別用不等式組表示W(wǎng)1和W2
(Ⅱ)若區(qū)域W中的動點P(x,y)到l1,l2的距離之積等于d2,求點P的軌跡C的方程;
(Ⅲ)設不過原點O的直線l與(Ⅱ)中的曲線C相交于M1,M2兩點,且與l1,l2分別交于M3,M4兩點,求證△OM1M2的重心與△OM3M4的重心重合。

查看答案和解析>>

如圖,直線l1:y=kx(k>0)與直線l2:y=-kx之間的陰影區(qū)域(不含邊界)記為W,其左半部分記為W1,右半部分記為W2
(Ⅰ)分別用不等式組表示W(wǎng)1和W2
(Ⅱ)若區(qū)域W中的動點P(x,y)到l1,l2的距離之積等于d2,求點P的軌跡C的方程;
(Ⅲ)設不過原點O的直線l與(Ⅱ)中的曲線C相交于M1,M2兩點,且與l1,l2分別交于M3,M4兩點.求證△OM1M2的重心與△OM3M4的重心重合.

查看答案和解析>>

如圖,直線l1:y=kx(k>0)與直線l2:y=-kx之間的陰影區(qū)域(不含邊界)記為W,其左半部分記為W1,右半部分記為W2
(Ⅰ)分別用不等式組表示W(wǎng)1和W2
(Ⅱ)若區(qū)域W中的動點P(x,y)到l1,l2的距離之積等于d2,求點P的軌跡C的方程;
(Ⅲ)設不過原點O的直線l與(Ⅱ)中的曲線C相交于M1,M2兩點,且與l1,l2分別交于M3,M4兩點.求證△OM1M2的重心與△OM3M4的重心重合.

查看答案和解析>>

 

一.選擇題

(1)D      (2)A     (3)B       (4)C       (5)B     (6)C

(7)B      (8)C     (9)A       (10)C      (11)B    (12)D

二.填空題

(13)4   (14)0.75   (15)9    (16)

三.解答題

(17)解:由

                             

得    又

于是 

      

(18)解:(Ⅰ)設A、B、C分別為甲、乙、丙三臺機床各自加工的零件是一等品的事件.

  由①、③得  代入②得  27[P(C)]2-51P(C)+22=0.

解得  (舍去).

將     分別代入 ③、②  可得 

即甲、乙、丙三臺機床各加工的零件是一等品的概率分別是

(Ⅱ)記D為從甲、乙、丙加工的零件中各取一個檢驗,至少有一個一等品的事件,

則 

故從甲、乙、丙加工的零件中各取一個檢驗,至少有一個一等品的概率為

 

(19)(Ⅰ)證明  因為底面ABCD是菱形,∠ABC=60°,

由PA2+AB2=2a2=PB2   知PA⊥AB.

同理,PA⊥AD,所以PA⊥平面ABCD.

(Ⅱ)解  作EG//PA交AD于G,

由PA⊥平面ABCD.

知EG⊥平面ABCD.作GH⊥AC于H,連結(jié)EH,

則EH⊥AC,∠EHG即為二面角的平面角.

又PE : ED=2 : 1,所以

從而    

(Ⅲ)解法一  以A為坐標原點,直線AD、AP分別為y軸、z軸,過A點垂直平面PAD的直線為x軸,建立空間直角坐標系如圖.由題設條件,相關(guān)各點的坐標分別為

所以

設點F是棱PC上的點,

       令   得

解得      即 時,

亦即,F(xiàn)是PC的中點時,、共面.

又  BF平面AEC,所以當F是棱PC的中點時,BF//平面AEC.

解法二  當F是棱PC的中點時,BF//平面AEC,證明如下,

    • 由   知E是MD的中點.

      連結(jié)BM、BD,設BDAC=O,則O為BD的中點.

      所以  BM//OE.  ②

      由①、②知,平面BFM//平面AEC.

      又  BF平面BFM,所以BF//平面AEC.

      證法二

      因為 

               

      所以  、共面.

      又 BF平面ABC,從而BF//平面AEC.

      (20)解:(Ⅰ)

      (i)當a=0時,令

      上單調(diào)遞增;

      上單調(diào)遞減.

      (ii)當a<0時,令

      上單調(diào)遞減;

      上單調(diào)遞增;

      上單調(diào)遞減.

      (Ⅱ)(i)當a=0時,在區(qū)間[0,1]上的最大值是

      (ii)當時,在區(qū)間[0,1]上的最大值是.

      (iii)當時,在區(qū)間[0,1]上的最大值是

      (21)解:(Ⅰ)依題意,可設直線AB的方程為 代入拋物線方程得   

           ①

      設A、B兩點的坐標分別是 、x2是方程①的兩根.

      所以     

      由點P(0,m)分有向線段所成的比為,

      又點Q是點P關(guān)于原點的對稱點,

      故點Q的坐標是(0,-m),從而.

                     

                     

      所以 

      (Ⅱ)由 得點A、B的坐標分別是(6,9)、(-4,4).

        得

      所以拋物線 在點A處切線的斜率為

      設圓C的方程是

      解之得

      所以圓C的方程是 

      即 

      (22)(Ⅰ)證明:設點Pn的坐標是,由已知條件得

      點Qn、Pn+1的坐標分別是:

      由Pn+1在直線l1上,得 

      所以    即 

      (Ⅱ)解:由題設知 又由(Ⅰ)知 ,

      所以數(shù)列  是首項為公比為的等比數(shù)列.

      從而 

      (Ⅲ)解:由得點P的坐標為(1,1).

      所以 

         

      (i)當時,>1+9=10.

      而此時 

      (ii)當時,<1+9=10.

      而此時 

       


      同步練習冊答案
      <input id="nthjv"></input>