如圖,直線l1:y=kx(k>0)與直線l2:y=-kx之間的陰影區(qū)域(不含邊界)記為W,其左半部分記為W1,右半部分記為W2,
(Ⅰ)分別用不等式組表示W(wǎng)1和W2;
(Ⅱ)若區(qū)域W中的動點(diǎn)P(x,y)到l1,l2的距離之積等于d2,求點(diǎn)P的軌跡C的方程;
(Ⅲ)設(shè)不過原點(diǎn)O的直線l與(Ⅱ)中的曲線C相交于M1,M2兩點(diǎn),且與l1,l2分別交于M3,M4兩點(diǎn),求證△OM1M2的重心與△OM3M4的重心重合。
解:(Ⅰ)
(Ⅱ)直線l1:kx-y=0(k>0),直線l2:kx+y=0,
由題意得,即,
由P(x,y)∈W,知,
所以,
所以動點(diǎn)P的軌跡C的方程為。
(Ⅲ)當(dāng)直線l與x軸垂直時(shí),可設(shè)直線l的方程為x=a(a≠0),
由于直線l,曲線C關(guān)于x軸對稱,且l1與l2關(guān)于x軸對稱,
于是M1M2,M3M4的中點(diǎn)坐標(biāo)都為(a,0),
所以△OM1M2,△OM3M4的重心坐標(biāo)都為,即它們的重心重合;
當(dāng)直線l與x軸不垂直時(shí),設(shè)直線l的方程為y=mx+n(n≠0),

由直線l與曲線C有兩個(gè)不同交點(diǎn),可知,
,
設(shè)的坐標(biāo)分別為,
,
設(shè)的坐標(biāo)分別為
,
從而,
所以,
所以,
于是△OM1M2的重心與△OM3M4的重心也重合。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線l1:y=kx(k>0)與直線l2:y=-kx之間的陰影區(qū)域(不含邊界)記為W,其左半部分記為W1,右半部分記為W2
(Ⅰ)分別用不等式組表示W(wǎng)1和W2
(Ⅱ)若區(qū)域W中的動點(diǎn)P(x,y)到l1,l2的距離之積等于d2,求點(diǎn)P的軌跡C的方程;
(Ⅲ)設(shè)不過原點(diǎn)O的直線l與(Ⅱ)中的曲線C相交于M1,M2兩點(diǎn),且與l1,l2分別交于M3,M4兩點(diǎn).求證△OM1M2的重心與△OM3M4的重心重合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線l1:y=kx+1-k(k≠0,k≠±
1
2
)與l2:y=
1
2
x+
1
2
相交于點(diǎn)P.直線l1與x軸交于點(diǎn)P1,過點(diǎn)P1作x軸的垂線交直線l2于點(diǎn)Q1,過點(diǎn)Q1作y軸的垂線交直線l1于點(diǎn)P2,過點(diǎn)P2作x軸的垂線交直線l2于點(diǎn)Q2,…,這樣一直作下去,可得到一系列點(diǎn)P1、Q1、P2、Q2,…,點(diǎn)Pn(n=1,2,…)的橫坐標(biāo)構(gòu)成數(shù)列{xn}.
(Ⅰ)證明xn+1-1=
1
2k
(xn-1),n∈N*
;
(Ⅱ)求數(shù)列{xn}的通項(xiàng)公式;
(Ⅲ)比較2|PPn|2與4k2|PP1|2+5的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直線l1:ax-y+b=0與直線l2:bx+y-a=0(ab≠0)圖象應(yīng)是(    )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直線l1:ax-y+b=0與直線l2:bx+y-a=0(ab≠0)圖象應(yīng)是(    )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2005年北京市高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,直線l1:y=kx(k>0)與直線l2:y=-kx之間的陰影區(qū)域(不含邊界)記為W,其左半部分記為W1,右半部分記為W2
(Ⅰ)分別用不等式組表示W(wǎng)1和W2
(Ⅱ)若區(qū)域W中的動點(diǎn)P(x,y)到l1,l2的距離之積等于d2,求點(diǎn)P的軌跡C的方程;
(Ⅲ)設(shè)不過原點(diǎn)O的直線l與(Ⅱ)中的曲線C相交于M1,M2兩點(diǎn),且與l1,l2分別交于M3,M4兩點(diǎn).求證△OM1M2的重心與△OM3M4的重心重合.

查看答案和解析>>

同步練習(xí)冊答案