答:x<-2.[評(píng)析]該題用到了復(fù)合函數(shù)單調(diào)性.但這一內(nèi)容在當(dāng)時(shí)教學(xué)大綱中明確不要求. 查看更多

 

題目列表(包括答案和解析)

記函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標(biāo)的點(diǎn)為函數(shù)f(x)圖象上的不動(dòng)點(diǎn).
(1)若函數(shù)f(x)=
3x+a
x+b
圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱的不動(dòng)點(diǎn),求實(shí)數(shù)a,b應(yīng)滿足的條件;
(2)設(shè)點(diǎn)P(x,y)到直線y=x的距離d=
|x-y|
2
.在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個(gè)不動(dòng)點(diǎn)分別為A1,A2,P為函數(shù)f(x)圖象上的另一點(diǎn),其縱坐標(biāo)yP>3,求點(diǎn)P到直線A1A2距離的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)有奇數(shù)個(gè)”是否正確?若正確,請(qǐng)給予證明;若不正確,請(qǐng)舉一反例.若地方不夠,可答在試卷的反面.

查看答案和解析>>

把函數(shù)的圖象按向量平移得到函數(shù)的圖象. 

(1)求函數(shù)的解析式; (2)若,證明:.

【解析】本試題主要考查了函數(shù) 平抑變換和運(yùn)用函數(shù)思想證明不等式。第一問中,利用設(shè)上任意一點(diǎn)為(x,y)則平移前對(duì)應(yīng)點(diǎn)是(x+1,y-2)代入 ,便可以得到結(jié)論。第二問中,令,然后求導(dǎo),利用最小值大于零得到。

(1)解:設(shè)上任意一點(diǎn)為(x,y)則平移前對(duì)應(yīng)點(diǎn)是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

(2) 證明:令,……6分

……8分

,∴,∴上單調(diào)遞增.……10分

,即

 

查看答案和解析>>

若直線y=2x上存在點(diǎn)(x,y)滿足約束條件,則實(shí)數(shù)m的最大值為

      A.-1       B.1            C.               D.2

【解析】

 

查看答案和解析>>

記函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標(biāo)的點(diǎn)為函數(shù)f(x)圖象上的不動(dòng)點(diǎn).
(1)若函數(shù)f(x)=
3x+a
x+b
圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱的不動(dòng)點(diǎn),求實(shí)數(shù)a,b應(yīng)滿足的條件;
(2)設(shè)點(diǎn)P(x,y)到直線y=x的距離d=
|x-y|
2
.在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個(gè)不動(dòng)點(diǎn)分別為A1,A2,P為函數(shù)f(x)圖象上的另一點(diǎn),其縱坐標(biāo)yP>3,求點(diǎn)P到直線A1A2距離的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)有奇數(shù)個(gè)”是否正確?若正確,請(qǐng)給予證明;若不正確,請(qǐng)舉一反例.若地方不夠,可答在試卷的反面.

查看答案和解析>>

(本題滿分14分)

(1)a >0,b>0,若的等比中項(xiàng),求的最小值

(2)已知x>2,求f(x)=的值域.

【解】

查看答案和解析>>


同步練習(xí)冊(cè)答案