題目列表(包括答案和解析)
已知數(shù)列的前項和為,且 (N*),其中.
(Ⅰ) 求的通項公式;
(Ⅱ) 設(shè) (N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數(shù)列的通項公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,
所以利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)時,由得. ……2分
若存在由得,
從而有,與矛盾,所以.
從而由得得. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一. ……10分
證法三:(利用對偶式)設(shè),,
則.又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)時, ,命題成立;
②假設(shè)時,命題成立,即,
則當(dāng)時,
即
即
故當(dāng)時,命題成立.
綜上可知,對一切非零自然數(shù),不等式②成立. ………………10分
②由于,
所以,
從而.
也即
已知是等差數(shù)列,其前n項和為Sn,是等比數(shù)列,且,.
(Ⅰ)求數(shù)列與的通項公式;
(Ⅱ)記,,證明().
【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.
由,得,,.
由條件,得方程組,解得
所以,,.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:數(shù)學(xué)歸納法)
① 當(dāng)n=1時,,,故等式成立.
② 假設(shè)當(dāng)n=k時等式成立,即,則當(dāng)n=k+1時,有:
即,因此n=k+1時等式也成立
由①和②,可知對任意,成立.
已知數(shù)列中,,,數(shù)列中,,且點(diǎn)在直線上。
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和;
(3)若,求數(shù)列的前項和;
【解析】第一問中利用數(shù)列的遞推關(guān)系式
,因此得到數(shù)列的通項公式;
第二問中,在 即為:
即數(shù)列是以的等差數(shù)列
得到其前n項和。
第三問中, 又
,利用錯位相減法得到。
解:(1)
即數(shù)列是以為首項,2為公比的等比數(shù)列
……4分
(2)在 即為:
即數(shù)列是以的等差數(shù)列
……8分
(3) 又
① ②
①- ②得到
設(shè)是直角坐標(biāo)系中,x軸、y軸正方向上的單位向量,設(shè)
(1)若(,求.
(2)若時,求的夾角的余弦值.
(3)是否存在實(shí)數(shù),使,若存在求出的值,不存在說明理由.
【解析】第一問中,利用向量的數(shù)量積為0,解得為m=-2
第二問中,利用時,結(jié)合向量的夾角的余弦值公式解得
第三問中,利用向量共線,求解得到m不存在。
(1)因?yàn)樵O(shè)是直角坐標(biāo)系中,x軸、y軸正方向上的單位向量,設(shè)
(2)因?yàn)?/p>
即;
(3)假設(shè)存在實(shí)數(shù),使,則有
因此不存在;
n |
k=1 |
1 |
lg(ak+2)lg(ak+1+2) |
lim |
n→∞ |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com