(Ⅰ)已知點(diǎn)C極坐標(biāo)為.求出以C為圓心.半徑r=2的圓的極坐標(biāo)方程, 查看更多

 

題目列表(包括答案和解析)

已知曲線C的極坐標(biāo)方程是ρ=1,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
t
2
y=2+
3
2
t
(t
為參數(shù)).
(1)寫出直線l與曲線C的直角坐標(biāo)方程;
(2)設(shè)曲線C經(jīng)過伸縮變換
x′=2x
y′=y
得到曲線C′,設(shè)曲線C′上任一點(diǎn)為M(x,y),求x+2
3
y
的最小值.

查看答案和解析>>

已知曲線C:
x=
3
+2cosθ
y=1+2sinθ
(θ為參數(shù),0≤θ<2π),
(1)將曲線C化為普通方程;
(2)求出該曲線在以直角坐標(biāo)系原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸的極坐標(biāo)系下的極坐標(biāo)方程.

查看答案和解析>>

已知曲線C的極坐標(biāo)方程為ρ=1,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立直角坐標(biāo)系,直線l的參數(shù)方程
x=6-
3
2
t
y=
1
2
t
,(t為參數(shù)).
(Ⅰ)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線C經(jīng)過伸縮變換
x′=3x
y′=y
得到曲線C′,在曲線C′上求一點(diǎn)M,使點(diǎn)M到直線l的距離最小,并求出最小距離.

查看答案和解析>>

已知圓C:
x=2+2cosθ
y=2sinθ
(θ為參數(shù))
,直線l:
x=2+
4
5
t
y=
3
5
t
(t為參數(shù))

(Ⅰ)求圓C的普通方程.若以原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,寫出圓C的極坐標(biāo)方程.
( II)判斷直線l與圓C的位置關(guān)系,并說明理由;若相交,請(qǐng)求出弦長(zhǎng).

查看答案和解析>>

已知曲線C的極坐標(biāo)方程 是=1,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù))。

(1)寫出直線與曲線C的直角坐標(biāo)方程;

(2)設(shè)曲線C經(jīng)過伸縮變換得到曲線,設(shè)曲線上任一點(diǎn)為,求的最小值。

 

查看答案和解析>>

一、選擇題:每小題5分,滿分60.

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

A

C

D

B

A

C

C

A

D

B

二、填空題:每小題4分,滿分16.

13. 

14. 1359

15. 

16.

三、解答題

17.解:(Ⅰ) 0.525                                                                           ……… 4分

(Ⅱ)

0

55

60

65

70

75

80

85

90

95

100

P

 

                                                                             ………12分

18.解:(Ⅰ)由,得,

                       所以數(shù)列只有三項(xiàng):,     ……… 3分

(Ⅱ)由題設(shè),解得

即當(dāng)時(shí)得到無窮的常數(shù)列;……… 6分

(Ⅲ)解不等式,得                     ……… 9分

   當(dāng)時(shí),,

   ,與矛盾;

   當(dāng)時(shí),,依此類推,可得

綜上,                                                                     ………12分

19.解:(Ⅰ)由幾何體的三視圖可知,底面是邊長(zhǎng)為的正方形,

       ,的中點(diǎn)

       又            ……… 4分

   (Ⅱ)取的中點(diǎn),的交點(diǎn)為,,

       ,故BEMN為平行四邊形

       ∥面                                                  ……… 8分

   (Ⅲ)分別以軸建立坐標(biāo)系,

       則,

的中點(diǎn),

       為面的法向量,,

       設(shè)平面的法向量為

       則

       ,的夾角為          ………11分

與面所成的二面角(銳角)的余弦值為             ………12分

20.解:(Ⅰ)設(shè),由題設(shè)得,整理得其中,

故點(diǎn)A的軌跡(含點(diǎn)B、C)M方程為.             ……… 4分

(Ⅱ)過點(diǎn),與軸平行的切線存在,此時(shí),    ……… 6分

設(shè)過點(diǎn),斜率為的切線方程為,于是

整理得   此方程有重根

   即

解得                          ………10分

所求切線方程為                           ………12分

21.解:由,得,

于是                                                                ……… 3分

    考察函數(shù),可知          ……… 6分

上, 變化情況如下表:

x

0

0

0

                                                                                           ……… 9分

從而,可得圓方程不同實(shí)數(shù)根的個(gè)數(shù)如下:

當(dāng)時(shí),有2個(gè);當(dāng)時(shí),有3個(gè);

當(dāng)時(shí),有4個(gè);當(dāng)時(shí),有0個(gè);

當(dāng)時(shí),有1個(gè).                                                           ………12分

22解:(Ⅰ)連結(jié)OF.∵DF切⊙O于F,∴∠OFD=90°.∴∠OFC+∠CFD=90°.

∵OC=OF,∴∠OCF=∠OFC.∵CO⊥AB于O,∴∠OCF+∠CEO=90°.

∴∠CFD=∠CEO=∠DEF,∴DF=DE.

∵DF是⊙O的切線,∴DF2=DB?DA.∴DE2=DB?DA.                    ……… 5分

(Ⅱ),CO=,    

∵CE?EF= AE?EB= (+2)(-2)=8,∴EF=2.                  ………10分

23解:(Ⅰ)設(shè)M為圓上一點(diǎn),坐標(biāo)為,則∠,

由余弦定理得∴極坐標(biāo)方程為           ……… 5分

(Ⅱ)的普通方程為,圓心,半徑

的普通方程為

因?yàn)閳A心到直線的距離為,

所以只有一個(gè)公共點(diǎn).                                                  ………10分

24.解:(Ⅰ)由絕對(duì)值不等式性質(zhì)知:

對(duì)恒成立

的解集為,只須既可

的取值范圍是                                                         ……… 5分

(Ⅱ)由(Ⅰ)知實(shí)數(shù)的最大值為3,當(dāng)時(shí),成立

證明如下:(利用分析法)要使成立

只須    等價(jià)于  

等價(jià)于    等價(jià)于,而顯然成立,

以上每一步均可逆推,故所證明不等式成立。                            ………10

 

 

 


同步練習(xí)冊(cè)答案