題目列表(包括答案和解析)
已知橢圓的長軸長為,焦點是,點到直線的距離為,過點且傾斜角為銳角的直線與橢圓交于A、B兩點,使得.
(1)求橢圓的標準方程; (2)求直線l的方程.
【解析】(1)中利用點F1到直線x=-的距離為可知-+=.得到a2=4而c=,∴b2=a2-c2=1.
得到橢圓的方程。(2)中,利用,設(shè)出點A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在橢圓+y2=1上, 得到坐標的值,然后求解得到直線方程。
解:(1)∵F1到直線x=-的距離為,∴-+=.
∴a2=4而c=,∴b2=a2-c2=1.
∵橢圓的焦點在x軸上,∴所求橢圓的方程為+y2=1.……4分
(2)設(shè)A(x1,y1)、B(x2,y2).由第(1)問知
,
∴……6分
∵A、B在橢圓+y2=1上,
∴……10分
∴l(xiāng)的斜率為=.
∴l(xiāng)的方程為y=(x-),即x-y-=0.
設(shè)α、β、γ為彼此不重合的三個平面,ι為直線,給出下列命題:
①若α∥β,α⊥γ,則β⊥γ,
②若α⊥γ,β⊥γ,且αnβ=ι,則ι⊥γ
③若直線l與平面α內(nèi)的無數(shù)條直線垂直則直線ι與平而α垂直,
④若α內(nèi)存在不共線的三點到β的距離相等.則平面α平行于平面β
上面命題中,真命題的序號為 (寫出所有真命題的序號)
設(shè)α、β、γ為彼此不重合的三個平面,ι為直線,給出下列命題:
①若α∥β,α⊥γ,則β⊥γ,
②若α⊥γ,β⊥γ,且αnβ=ι,則ι⊥γ
③若直線l與平面α內(nèi)的無數(shù)條直線垂直則直線ι與平而α垂直,
④若α內(nèi)存在不共線的三點到β的距離相等.則平面α平行于平面β
上面命題中,真命題的序號為 (寫出所有真命題的序號)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com