解 y′=(sin2x)′+′=′+cosx=cos2x+cosx.不妨設(shè)f(x)=cos2x+cosx.∵f=cos2x+cosx=f(x),∴y′為偶函數(shù).又由于y′=2cos2x-1+cosx=2cos2x+cosx-1,令t=cosx, 查看更多

 

題目列表(包括答案和解析)

已知x+y=1(x>0,y>0),求+的最小值.請仔細(xì)閱讀下面的解法并在填空處回答指定的問題.

解:∵x+y=1(x>0,y>0),∴令x=cos2θ,y=sin2θ(其中①___________;②____________),則+=1cos2θ+=tan2θ+2cot2θ+3≥3+,則當(dāng)③____________時(shí),+取得最小值3+(注意:①指出運(yùn)用了什么數(shù)學(xué)方法;②指出θ的一個(gè)取值范圍;③指出x,y的取值).

查看答案和解析>>

若θ∈(0,
π
2
),則函數(shù)y=logsinθ(1-x)>2的解集是( 。

查看答案和解析>>

已知向量
a
=(cos2ωx-sin2ωx,sinωx)
,
b
=(
3
,2cosωx)
,設(shè)函數(shù)f(x)=
a
b
(x∈R)
的圖象關(guān)于直線x=
π
2
對稱,其中ω為常數(shù),且ω∈(0,1).
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)若將y=f(x)圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?span id="95zl7dp" class="MathJye">
1
6
,再將所得圖象向右平移
π
3
個(gè)單位,縱坐標(biāo)不變,得到y(tǒng)=h(x)的圖象,若關(guān)于x的方程h(x)+k=0在區(qū)間[0,
π
2
]
上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

附加題:已知函數(shù)f(x)=sin2ωx+
3
cosωx•cos(
π
2
-ωx)-
1
2
,(其中ω>0)
,且函數(shù)y=f(x)的圖象相鄰兩條對稱軸之間的距離為
π
2

(Ⅰ)求f(
π
6
)
的值;
(Ⅱ)若函數(shù)f(kx+
π
12
)(k>0)
在區(qū)間[-
π
6
,
π
3
]
上單調(diào)遞增,求實(shí)數(shù)k的取值范圍;
(III)是否存在實(shí)數(shù)m使方程3f2(x)-f(x)+m=0在(
π
12
π
3
]
內(nèi)僅有一解,若存在,求出實(shí)數(shù)m的取值范圍,若不存在,說明理由.

查看答案和解析>>

給出下列四個(gè)命題:
(1)函數(shù)y=3sin
x
2
+4cos
x
2
的定義域?yàn)閇0,2π],則值域?yàn)閇-5,5];
(2)三角方程tan(5x+
9
)=
2
在[0,π]內(nèi)有5個(gè)解;
(3)對任意的α∈R,三角公式sin2α=
2tanα
1+tan2α
是一定成立的;
(4)函數(shù)y=cosx與y=arccosx(|x|≤1)互為反函數(shù).
其中正確的個(gè)數(shù)是( 。

查看答案和解析>>


同步練習(xí)冊答案