21解:(Ⅰ) 所求的橢圓方程為 查看更多

 

題目列表(包括答案和解析)

仔細(xì)閱讀下面問(wèn)題的解法:
設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
∴a<2即為所求.
學(xué)習(xí)以上問(wèn)題的解法,解決下面的問(wèn)題:
(1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對(duì)于(1)中的A,設(shè)g(x)=
10-x
10+x
x∈A,試判斷g(x)的單調(diào)性;(不證)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

仔細(xì)閱讀下面問(wèn)題的解法:
設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍.
解:由已知可得 a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
∴a<2即為所求.
學(xué)習(xí)以上問(wèn)題的解法,解決下面的問(wèn)題:
(1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對(duì)于(1)中的A,設(shè)g(x)=數(shù)學(xué)公式x∈A,試判斷g(x)的單調(diào)性;(不證)
(3)又若B={x|數(shù)學(xué)公式>2x+a-5},若A∩B≠Φ,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

仔細(xì)閱讀下面問(wèn)題的解法:
設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍.
由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
∴a<2即為所求.
學(xué)習(xí)以上問(wèn)題的解法,解決下面的問(wèn)題:
(1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對(duì)于(1)中的A,設(shè)g(x)=
10-x
10+x
x∈A,試判斷g(x)的單調(diào)性;(不證)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

某港口海水的深度(米)是時(shí)間(時(shí))()的函數(shù),記為:

已知某日海水深度的數(shù)據(jù)如下:

(時(shí))

0

3

6

9

12

15

18

21

24

(米)

10.0

13.0

9.9

7.0

10.0

13.0

10.1

7.0

10.0

經(jīng)長(zhǎng)期觀察,的曲線可近似地看成函數(shù)的圖象

(I)試根據(jù)以上數(shù)據(jù),求出函數(shù)的振幅、最小正周期和表達(dá)式;

(II)一般情況下,船舶航行時(shí),船底離海底的距離為米或米以上時(shí)認(rèn)為是安全的(船舶停靠時(shí),船底只需不碰海底即可)。某船吃水深度(船底離水面的距離)為米,如果該船希望在同一天內(nèi)安全進(jìn)出港,請(qǐng)問(wèn),它至多能在港內(nèi)停留多長(zhǎng)時(shí)間(忽略進(jìn)出港所需時(shí)間)

【解析】第一問(wèn)中利用三角函數(shù)的最小正周期為: T=12   振幅:A=3,b=10,  

第二問(wèn)中,該船安全進(jìn)出港,需滿足:即:          ∴  ,可解得結(jié)論為得到。

 

查看答案和解析>>

要將甲、乙兩種大小不同的鋼板截成A、B兩種規(guī)格,每張鋼板可同時(shí)截得A、B兩種規(guī)格的小鋼板的塊數(shù)如下表所示:

規(guī)格類型

鋼板類型

A

B

2

1

1

3

已知庫(kù)房中現(xiàn)有甲、乙兩種鋼板的數(shù)量分別為5張和10張,市場(chǎng)急需A、B兩種規(guī)格的成品數(shù)分別為15塊和27塊.

(1)問(wèn)各截這兩種鋼板多少?gòu)埧傻玫剿璧某善窋?shù),且使所用的兩張鋼板的總張數(shù)最少?

(2)有5個(gè)同學(xué)對(duì)線性規(guī)劃知識(shí)了解不多,但是畫(huà)出了可行域,他們每個(gè)人都在可行域的整點(diǎn)中隨意取出一解,求恰好有2個(gè)人取到最優(yōu)解的概率.

查看答案和解析>>


同步練習(xí)冊(cè)答案