11 △ABC中.中線BD.CE交于點O.F.G分別為OB.OC的中點.求證:四邊形DEFG為平行四邊形 查看更多

 

題目列表(包括答案和解析)

如圖,在△ABC中,AD是BC邊上的中線.若△ABC的周長為35,BC=11,且△ABD與△ACD的周長差為3,求AB,AC的長.

查看答案和解析>>

如圖,已知等邊△ABC中,D為AC上一動點.CD=nAD,連接BD,M為線段BD上一點,∠AMD=60°,AM交BC于E.
(1)若n=1,如圖1,則
BE
CE
=
1
1
,
BM
DM
=
2
2
;
(2)若n=2,如圖2,求證:2AB=3BE;
(3)當
BE
AB
=
7
9
時,則n的值為
3.5
3.5

查看答案和解析>>

(2013•桐鄉(xiāng)市一模)如圖,在△ABC中,點E是BC的中點,AD是∠BAC的平分線,EF∥AD,若AB=7,AC=11,則FC的長為( 。

查看答案和解析>>

如圖,△ABC中,點D是BC中點,連接AD并延長到點E,連接BE.
(1)若要使△ACD≌△EBD,應添上條件:
AD=DE
AD=DE
;
(2)證明:
(3)在△ABC中,若AB=5,AC=3,可以求得BC邊上的中線AD的取值范圍是AD<4.請看解題過程:由△ACD≌△EBD得:AD=ED,BE=AC=3,因此AE<AB+BE,即AE<8,而AD=
12
AE
,則AD<4.請參考上述解題方法,求出AD>
1
1
.所以AD的取值范圍是
1<AD<4
1<AD<4

查看答案和解析>>

(2013•貴陽)在△ABC中,BC=a,AC=b,AB=c,設(shè)c為最長邊,當a2+b2=c2時,△ABC是直角三角形;當a2+b2≠c2時,利用代數(shù)式a2+b2和c2的大小關(guān)系,探究△ABC的形狀(按角分類).
(1)當△ABC三邊分別為6、8、9時,△ABC為
銳角
銳角
三角形;當△ABC三邊分別為6、8、11時,△ABC為
鈍角
鈍角
三角形.
(2)猜想,當a2+b2
c2時,△ABC為銳角三角形;當a2+b2
c2時,△ABC為鈍角三角形.
(3)判斷當a=2,b=4時,△ABC的形狀,并求出對應的c的取值范圍.

查看答案和解析>>


同步練習冊答案