4 查看更多

 

題目列表(包括答案和解析)

4
-2
(-
1
2
x2+x+4)dx
=( 。
A、16B、18C、20D、22

查看答案和解析>>

11、4位同學(xué)參加某種形式的競賽,競賽規(guī)則規(guī)定:每位同學(xué)必須從甲、乙兩道題中任選一題作答,選甲題答對得21分,答錯得-21分;選乙題答對得7分,答錯得-7分.若4位同學(xué)的總分為0,則這4位同學(xué)不同得分情況的種數(shù)是( 。

查看答案和解析>>

4-2 矩陣與變換
求將曲線y2=x繞原點逆時針旋轉(zhuǎn)90°后所得的曲線方程.

查看答案和解析>>

5、4、如果把兩條異面直線看成“一對”,那么六棱錐的棱所在的12條直線中,異面直線共有( 。

查看答案和解析>>

6、“-4<k<0”是函數(shù)y=kx2-kx-1的值為負值的充分不必要條件.

查看答案和解析>>

一、選擇題  1-5  D D A C B  6-10  C B D A D  11 A 12 D

二、填空題13.丙     14.     15.    16.

三、解答題

17(1)解:∵p與q是共線向量
  ∴(2-2sin A)(1+sin A)-(cos A+sin A)(sin A-cos A)=0                                 2分
  整理得:,∴                                                             4分
  ∵△ABC為銳角三角形,∴A=60°                                                                      6分

 (2)
                                          10分
  當B=60°時取函數(shù)取最大值2.
  此時三角形三內(nèi)角均為60°                                                                               12分

18. 解:(1)由已知,甲隊5名隊員連續(xù)有3人射中,另外2人未射中的概率為

       ……………………6分

(2)兩隊各射完5個點球后甲勝出,比分為3:1的概率為

…………………………12分

 19.本小題滿分12分)

    解:(I)在直三棱柱ABC―中,AA1⊥面ABC

    ∴AA1⊥BC

    又∵∠ABC=90°

    ∴BC⊥面ABB1A1

    又面ABB1A1

    ∴BC⊥A1E  3分

    (II)連接AC1交A1C于點F,則F為AC1的中點

    又∵E為AB的中點    ∴EF∥BC1  5分

    又EF面A1CE    ∴BC1∥面A1CE  6分

    (III)∵面ACA1⊥面ABC,作EO⊥AC,則EO⊥面ACA1,

    作OG⊥A1C,則∠OGE為二面角A―A1C―E的平面角  8分

    又∵直線A1C與面ABC成45°角

    ∴∠A1CA=45°

    又,E為AB的中點    ∴

    ∴  11分

    ∴

    ∴二面角A―A1C―E的正切值為  12分

20.解:       

  (1)是的極小值點,.           

  (2)令   ……. ①

   當時,

   當時,    ….②

① - ② 得:

                    

                     

21解:        …………………2分

①     當時,

        (舍)          …………………5分

②     當

    又

∴                                              …………………8分

③     當

 

                                            ………………11分

綜上所述   ………………12

22.解:(Ⅰ)設(shè)所求雙曲線的方程為

拋物線的焦點F,即

又雙曲線過點,解得

故所求雙曲線的方程為

(Ⅱ) 直線.消去方程組中的并整理,得.   ①

設(shè),由已知有,且是方程①的兩個實根,

,,  .

  (Ⅲ) 解之,得

,∴, 因此,

 


同步練習(xí)冊答案