. . . .[解析]因緯線弧長>球面距離>直線距離.排除A.B.D.故選C. 查看更多

 

題目列表(包括答案和解析)

【解析圖片】設(shè)二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足f(-1)=0,且對任意實數(shù)x,均有x-1≤f(x)≤x2-3x+3恒成立.
(1)求f(x)的表達(dá)式;
(2)若關(guān)于x的不等式f(x)≤nx-1的解集非空,求實數(shù)n的取值的集合A.
(3)若關(guān)于x的方程f(x)=nx-1的兩根為x1,x2,試問:是否存在實數(shù)m,使得不等式m2+tm+1≤|x1-x2|對任意n∈A及t∈[-3,3]恒成立?若存在,求出m的取值范圍;若不存在,說明理由.

查看答案和解析>>

若某產(chǎn)品的直徑長與標(biāo)準(zhǔn)值的差的絕對值不超過1mm 時,則視為合格品,否則視為不合格品。在近期一次產(chǎn)品抽樣檢查中,從某廠生產(chǎn)的此種產(chǎn)品中,隨機抽取5000件進(jìn)行檢測,結(jié)果發(fā)現(xiàn)有50件不合格品。計算這50件不合格品的直徑長與標(biāo)準(zhǔn)值的差(單位:mm), 將所得數(shù)據(jù)分組,得到如下頻率分布表:

分組

頻數(shù)

頻率

[-3, -2)

 

0.10

[-2, -1)

8

 

(1,2]

 

0.50

(2,3]

10

 

(3,4]

 

 

合計

50

1.00

(Ⅰ)將上面表格中缺少的數(shù)據(jù)填在答題卡的相應(yīng)位置;

(Ⅱ)估計該廠生產(chǎn)的此種產(chǎn)品中,不合格品的直徑長與標(biāo)準(zhǔn)值的差落在區(qū)間(1,3]內(nèi)的概率;

(Ⅲ)現(xiàn)對該廠這種產(chǎn)品的某個批次進(jìn)行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品。據(jù)此估算這批產(chǎn)品中的合格品的件數(shù)。

【解析】(Ⅰ)

分組

頻數(shù)

頻率

[-3, -2)

 5

0.10

[-2, -1)

8

0.16 

(1,2]

 25

0.50

(2,3]

10

0.2

(3,4]

 2

0.04

合計

50

1.00

(Ⅱ)根據(jù)頻率分布表可知,落在區(qū)間(1,3]內(nèi)頻數(shù)為35,故所求概率為0.7.

(Ⅲ)由題可知不合格的概率為0.01,故可求得這批產(chǎn)品總共有2000,故合格的產(chǎn)品有1980件。

 

查看答案和解析>>

2011年3月日本發(fā)生的9.0級地震引發(fā)了海嘯和核泄漏。核專家為檢測當(dāng)?shù)貏游锸芎溯椛浜髮ι眢w健康的影響,隨機選取了110只羊進(jìn)行檢測。其中身體健康的50只中有30只受到高度輻射,余下的60只身體不健康的羊中有10只受輕微輻射。

(1)作出2×2列聯(lián)表

(2)判斷有多大把握認(rèn)為羊受核輻射對身體健康有影響?

【解析】本試題主要考查了列聯(lián)表的運用,以及判定兩個分類變量之間的相關(guān)性問題的運用首先根據(jù)題意得到2×2列聯(lián)表:,然后求解的觀測值為

因為,因此可知有99%的把握可以認(rèn)為羊受核輻射對身體健康有影響。

解:(1)2×2列聯(lián)表:

輻射程度健康類型

 

高度輻射

 

輕微輻射

 

合   計

身體健康

30

20

50

身體不健康

50

10

60

合  計

80

30

110

 

 

--------5分

 

-

 

(Ⅱ)的觀測值為

     -----9分

而 

∴有99%的把握可以認(rèn)為羊受核輻射對身體健康有影響。

 

查看答案和解析>>

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時,求證:;

(Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時,底面ABCD為正方形,

又因為,………………2分

,得證。

第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時,存在點Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時,底面ABCD為正方形,

又因為,………………3分

(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時,存在點Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

已知三棱錐P—ABC中,PC⊥底面ABC,,,二面角P-AB-C為,D、F分別為AC、PC的中點,DE⊥AP于E.

(Ⅰ)求證:AP⊥平面BDE;                

(Ⅱ)求直線EB與平面PAC所成的角。

【解析】本試題主要考查了線面的垂直問題以及線面角的求解的綜合運用。

 

查看答案和解析>>

1. 由函數(shù)6ec8aac122bd4f6e知,當(dāng)時,,且6ec8aac122bd4f6e,則它的反函數(shù)過點(3,4),故選A.  

 

2.∵,∴,則,即,.,選B.

3. 由平行四邊形法則,,

,

,

,當(dāng)P為中點時,取得最小值.選B.

4. 設(shè)是橢圓的一個焦點,它是橢圓三個頂點,,構(gòu)成的三角形的垂心(如圖).由,即,∴,得,解得,選A.

 

5. 設(shè)正方形邊長為,,則,.在由正弦定理得,又在由余弦定理得,于是,,選C.

6. 在底面上的射影知,為斜線在平面上的射影,∵,由三垂線定理得,∵,所以直線與直線重合,選A.

 

7. 過A作拋物線的準(zhǔn)線的垂線AA1交準(zhǔn)線A1,  過B作橢圓的右準(zhǔn)線的垂線交右準(zhǔn)線于則有:BN=e|BB1|=2-xB,AN=|AA1|=xA+1,周長=|AN|+|AB|+|BN|=xA+1+(xB-xA)+(2-xB)=3+xB,

由可得兩曲線的交點x=,xB∈(,2),

∴3+xB∈(,4),即△ANB周長取值范圍是(,4),選B.

 

8. 先將3,5兩個奇數(shù)排好,有種排法,再將4,6兩個偶數(shù)插入3,5中,有種排法,最后將1,2 當(dāng)成一個整體插入5個空位中,所以這樣的六位數(shù)的個數(shù)為,選B.


同步練習(xí)冊答案