題目列表(包括答案和解析)
(本小題滿分12分)
如圖,在平面直角坐標(biāo)系中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負(fù)半軸上.已知,,△ABC的面積,拋物線
經(jīng)過A、B、C三點。
1.(1)求此拋物線的函數(shù)表達(dá)式;
2.(2)設(shè)E是y軸右側(cè)拋物線上異于點B的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運動過程中,當(dāng)矩形EFGH為正方形時,求出該正方形的邊長;
3.(3)在拋物線上是否存在異于B、C的點M,使△MBC中BC邊上的高為?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
(本小題滿分12分,每題6分)
(1)計算:。
(2)解不等式組:,并寫出該不等式組的最小整數(shù)解。
(本小題滿分12分)
1. (1)觀察發(fā)現(xiàn)
如(a)圖,若點A,B在直線同側(cè),在直線上找一點P,使AP+BP的值最小.
做法如下:作點B關(guān)于直線的對稱點,連接,與直線的交點就是所求的點P
再如(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小.
做法如下:作點B關(guān)于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為 . (2分)
2.(2)實踐運用
如圖,菱形ABCD的兩條對角線分別長6和8,點P是對角線AC上的一個動點,點M、N分別是邊AB、BC的中點,求PM+PN的最小值。(5分)
3.(3)拓展延伸
如(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法. (5分)
(本小題滿分12分)
如圖,在平面直角坐標(biāo)系xoy中,矩形ABCD的邊AB在x軸上,且AB=3,BC=,直線y=經(jīng)過點C,交y軸于點G。
1.(1)點C、D的坐標(biāo)分別是C( ),D( );
2.(2)求頂點在直線y=上且經(jīng)過點C、D的拋物
線的解析式;
3.(3)將(2)中的拋物線沿直線y=平移,平移后
的拋物線交y軸于點F,頂點為點E(頂點在y軸右側(cè))。
平移后是否存在這樣的拋物線,使⊿EFG為等腰三角形?
若存在,請求出此時拋物線的解析式;若不存在,請說
明理由。
(本小題滿分12分)
如圖,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.動點M以每秒1個單位長的速度,從點A沿線段AB向點B運動;同時點P以相同的速度,從點C沿折線C-D-A向點A運動.當(dāng)點M到達(dá)點B時,兩點同時停止運動.過點M作直線l∥AD,與折線A-C-B的交點為Q.點M運動的時間為t(秒).
(1)當(dāng)時,求線段的長;
(2)點M在線段AB上運動時,是否可以使得以C、P、Q為頂點的三角形為直角三角形,若可以,請直接寫出t的值(不需解題步驟);若不可以,請說明理由.
(3)若△PCQ的面積為y,請求y關(guān)于出t 的函數(shù)關(guān)系式及自變量的取值范圍;
一、選擇題
1.A 2.B 3.C 4.D 5.C 6.A 7.D 8.C
二、填空題
9.-5 10.3 11.x=1 12.2 13.105
三、解答題
14.解:
= 1 + 2 + (-2) …………6分.
=1 …………7分.
15.解:由題意,得x-3>0,∴x>3, …………2分
∴原式= …………4分
= …………5分.
=
= …………6分.
當(dāng)x=4時,原式= …………7分
提示:本題屬開放題,答案不唯一。在選取x值時,注意必須符合x>3這一條件。
16.解:設(shè)原計劃參加植樹的學(xué)生有人,則實際參加植樹的學(xué)生有1.5,依題意得:
………2分
…………5分
解得,
經(jīng)檢驗x=30是原方程的根,∴ …………6分
答:實際參加這次植樹的學(xué)生有45人. …………7分
17.解:作AD⊥BC交BC延長線于D, …………2分
設(shè)AD=,在Rt△ACD中,∠CAD=30°
∴CD=。 …………4分
在Rt△ABD中,∠ABD=30°
∴BD= ∵BC=8
x=4≈6.928 ∵6.928海里<7海里 …………6分
∴有觸礁危險。
答:有觸礁危險。 …………7分
18.根據(jù)具體情況給分。
四、解答題
19.解:(1)設(shè)紅球的個數(shù)為,………………………………1分
由題意得, ……………………………4分
解得, .
答:口袋中紅球的個數(shù)是1. ……………………………5分
(2)小明的認(rèn)為不對. ……………………………………6分
樹狀圖如下:
…………8分
∴ ,,.
∴ 小明的認(rèn)為不對. …………9分
20.解:可組成方程組: ………………2分
(1)+(2)得: ………………4分
∴ ………………6分
把代入(2)得: ………………8分
∴原方程組的解為 ………………9分
答案不唯一,其它按此參考給分
21.猜想:BE∥DF BE=DF ………………4分.
證明:在平行四邊形ABCD中,AB=CD、AB∥CD
∴∠BAC=∠DCA
又∵ AF=CE
∴AE=CF
∴△ABE≌△CDF ………………7分.
∴BE=DF ∠AEB=∠CFD
∴∠BEF=∠DFE
∴BE∥DF ………………9分.
五、解答題
22..解:(1),°,
°. ……………2分
又平分,
°.……………4分
,°.
°, ………………6分
是圓的直徑,. ………………7分
四邊形的周長為cm,
cm,cm.
此圓的半徑為cm. ………………8分
(2)設(shè)的中點為,由(1)可知即為圓心.
連接,過作于.……………9分
在中,,
cm.
(cm2). ………………10分
≈0.3(cm2)……12分
23. 解:(1) 如圖:,;…………………………4分
(2) (b,a) ; …………………………6分
(3) 由(2)得,D(1,-3) 關(guān)于直線 l 的對稱點的坐標(biāo)為(-3,1),連接E交
直線 l 于點Q,此時點Q到D、E兩點的距離之和最小 ……………8分
設(shè)過(-3,1) 、E(-1,-4)的直線的解析式為,則
,∴,
∴. …………………………10分
由
得
∴所求Q點的坐標(biāo)為(,) …………12分
24.解:(1)依據(jù)題意
∵AP=AD=4,AE=2
∴EP=
∴P點坐標(biāo)為(2,2) ……………………4分
設(shè)DM=x,則MP=x,過M作MN⊥EF,垂足為N,則MN=2,
PN=2-x
在Rt△MNP中,22+(2-x)2=x2
解之得:x=
∴M點坐標(biāo)為(,4) ………8分
(2)設(shè)折痕AM所在直線的解析式為y=kx(k≠0),則4=k
k=∴折痕AM所在直線的解析式為y=x ………10分
(3)H1(-2,-2),H2(,2),H3(2,2),H4(2,6) ………12分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com