15.設(shè).“ 是“曲線為橢圓 的( )(A)充分非必要條件 (B)必要非充分條件(C)充分必要條件 (D)既非充分又非必要條件 查看更多

 

題目列表(包括答案和解析)

(1)若橢圓的方程是:
x2
a2
+
y2
b2
=1(a>b>0),它的左、右焦點(diǎn)依次為F1、F2,P是橢圓上異于長(zhǎng)軸端點(diǎn)的任意一點(diǎn).在此條件下我們可以提出這樣一個(gè)問(wèn)題:“設(shè)△PF1F2的過(guò)P角的外角平分線為l,自焦點(diǎn)F2引l的垂線,垂足為Q,試求Q點(diǎn)的軌跡方程?”
對(duì)該問(wèn)題某同學(xué)給出了一個(gè)正確的求解,但部分解答過(guò)程因作業(yè)本受潮模糊了,我們?cè)?br />精英家教網(wǎng)
這些模糊地方劃了線,請(qǐng)你將它補(bǔ)充完整.
解:延長(zhǎng)F2Q 交F1P的延長(zhǎng)線于E,據(jù)題意,
E與F2關(guān)于l對(duì)稱(chēng),所以|PE|=|PF2|.
所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|=
 

在△EF1F2中,顯然OQ是平行于EF1的中位線,
所以|OQ|=
1
2
|EF1|=
 

注意到P是橢圓上異于長(zhǎng)軸端點(diǎn)的點(diǎn),所以Q點(diǎn)的軌跡是
 
,
其方程是:
 

(2)如圖2,雙曲線的方程是:
x2
a2
-
y2
b2
=1(a,b>0),它的左、右焦點(diǎn)依次為F1、F2,P是雙曲線上異于實(shí)軸端點(diǎn)的任意一點(diǎn).請(qǐng)你試著提出與(1)類(lèi)似的問(wèn)題,并加以證明.

查看答案和解析>>

精英家教網(wǎng)給出以下判斷:
(1)b=0是函數(shù)f(x)=ax2+bx+c為偶函數(shù)的充要條件;
(2)橢圓
x2
4
+
y2
3
=1
中,以點(diǎn)(1,1)為中點(diǎn)的弦所在直線方程為x+2y-3=0;
(3)回歸直線
y
=
b
x+
a
必過(guò)點(diǎn)(
.
x
.
y
)
;
(4)如圖,在四面體ABCD中,設(shè)E為△BCD的重心,則
AE
=
AB
+
1
2
AC
+
2
3
AD
;
(5)雙曲線
x2
a2
-
y2
b2
=1( a>0 , b>0 )
的兩焦點(diǎn)為F1,F(xiàn)2,P為右支是異于右頂點(diǎn)的任一點(diǎn),△PF1F2的內(nèi)切圓圓心為T(mén),則點(diǎn)T的橫坐標(biāo)為a.其中正確命題的序號(hào)是
 

查看答案和解析>>

給出以下判斷:
(1)b=0是函數(shù)f(x)=ax2+bx+c為偶函數(shù)的充要條件;
(2)橢圓
x2
4
+
y2
3
=1
中,以點(diǎn)(1,1)為中點(diǎn)的弦所在直線方程為x+2y-3=0;
(3)回歸直線
y
=
b
x+
a
必過(guò)點(diǎn)(
.
x
,
.
y
)
;
(4)如圖,在四面體ABCD中,設(shè)E為△BCD的重心,則
AE
=
AB
+
1
2
AC
+
2
3
AD
;
(5)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的兩焦點(diǎn)為F1,F(xiàn)2,P為右支是異于右頂點(diǎn)的任一點(diǎn),△PF1F2的內(nèi)切圓圓心為T(mén),則點(diǎn)T的橫坐標(biāo)為a.其中正確命題的序號(hào)是______.

查看答案和解析>>

我們知道,判斷直線與圓的位置關(guān)系可以用圓心到直線的距離進(jìn)行判別,那么直線與橢圓的位置關(guān)系有類(lèi)似的判別方法嗎?請(qǐng)同學(xué)們進(jìn)行研究并完成下面問(wèn)題.
(1)設(shè)F1、F2是橢圓M:
x2
25
+
y2
9
=1
的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線L:
2
x-y+
5
=0的距離分別為d1、d2,試求d1•d2的值,并判斷直線L與橢圓M的位置關(guān)系.
(2)設(shè)F1、F2是橢圓M:
x2
a2
+
y2
b2
=1
(a>b>0)的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線L:mx+ny+p=0(m、n不同時(shí)為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1•d2的值.
(3)試寫(xiě)出一個(gè)能判斷直線與橢圓的位置關(guān)系的充要條件,并證明.
(4)將(3)中得出的結(jié)論類(lèi)比到其它曲線,請(qǐng)同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明).

查看答案和解析>>

我們知道,判斷直線與圓的位置關(guān)系可以用圓心到直線的距離進(jìn)行判別,那么直線與橢圓的位置關(guān)系有類(lèi)似的判別方法嗎?請(qǐng)同學(xué)們進(jìn)行研究并完成下面問(wèn)題.
(1)設(shè)F1、F2是橢圓M:
x2
25
+
y2
9
=1
的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線L:
2
x-y+
5
=0的距離分別為d1、d2,試求d1•d2的值,并判斷直線L與橢圓M的位置關(guān)系.
(2)設(shè)F1、F2是橢圓M:
x2
a2
+
y2
b2
=1
(a>b>0)的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線L:mx+ny+p=0(m、n不同時(shí)為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1•d2的值.
(3)試寫(xiě)出一個(gè)能判斷直線與橢圓的位置關(guān)系的充要條件,并證明.
(4)將(3)中得出的結(jié)論類(lèi)比到其它曲線,請(qǐng)同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明).

查看答案和解析>>

一、填空題(本大題滿分48分,每小題4分,共12小題)

1.;   2.;   3.;   4.;   5.;

6.;   7.;   8.;   9.; 10.;

11.;   12..

二、選擇題(本大題滿分16分,每小題4分,共4小題)

13.C;   14.A;   15.B;   16.C;

三、解答題(本大題滿分86分,本大題共有6題)

17.(1);

       

(2)

18.1號(hào)至4號(hào)正四棱柱形容器是體積依次為。

∵  ,,

∴  存在必勝方案,即選擇3號(hào)和4號(hào)容器。

19.(1)∵  由正弦定理,,∴ 。

      ∵  , ∴  ,即!  。

 (2)∵ 

∴  。

20.(1)設(shè)放水分鐘內(nèi)水箱中的水量為

依題意得;

分鐘時(shí),水箱的水量升, 放水后分鐘水箱內(nèi)水量接近最少;

(2)該淋浴器一次有個(gè)人連續(xù)洗浴, 于是,

所以,一次可最多連續(xù)供7人洗浴。

21.(1)由,∴時(shí)成等比數(shù)列。

(2)因,由(1)知,,故。

(3)設(shè)存在,使得成等差數(shù)列,則,

,所以,

∴不存在中的連續(xù)三項(xiàng)使得它們可以構(gòu)成等差數(shù)列。

22.(1)解:設(shè)為函數(shù)圖像的一個(gè)對(duì)稱(chēng)點(diǎn),則對(duì)于恒成立.即對(duì)于恒成立,

,故圖像的一個(gè)對(duì)稱(chēng)點(diǎn)為.

(2)解:假設(shè)是函數(shù)(的圖像的一個(gè)對(duì)稱(chēng)點(diǎn),

(對(duì)于恒成立,

對(duì)于恒成立,因?yàn)?sub>,所以

恒成立,

即函數(shù)(的圖像無(wú)對(duì)稱(chēng)點(diǎn).

 


同步練習(xí)冊(cè)答案