(1)若橢圓的方程是:
x2
a2
+
y2
b2
=1(a>b>0),它的左、右焦點(diǎn)依次為F1、F2,P是橢圓上異于長(zhǎng)軸端點(diǎn)的任意一點(diǎn).在此條件下我們可以提出這樣一個(gè)問(wèn)題:“設(shè)△PF1F2的過(guò)P角的外角平分線為l,自焦點(diǎn)F2引l的垂線,垂足為Q,試求Q點(diǎn)的軌跡方程?”
對(duì)該問(wèn)題某同學(xué)給出了一個(gè)正確的求解,但部分解答過(guò)程因作業(yè)本受潮模糊了,我們?cè)?br />精英家教網(wǎng)
這些模糊地方劃了線,請(qǐng)你將它補(bǔ)充完整.
解:延長(zhǎng)F2Q 交F1P的延長(zhǎng)線于E,據(jù)題意,
E與F2關(guān)于l對(duì)稱,所以|PE|=|PF2|.
所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|=
 
,
在△EF1F2中,顯然OQ是平行于EF1的中位線,
所以|OQ|=
1
2
|EF1|=
 
,
注意到P是橢圓上異于長(zhǎng)軸端點(diǎn)的點(diǎn),所以Q點(diǎn)的軌跡是
 
,
其方程是:
 

(2)如圖2,雙曲線的方程是:
x2
a2
-
y2
b2
=1(a,b>0),它的左、右焦點(diǎn)依次為F1、F2,P是雙曲線上異于實(shí)軸端點(diǎn)的任意一點(diǎn).請(qǐng)你試著提出與(1)類似的問(wèn)題,并加以證明.
分析:(1)根據(jù)題意:延長(zhǎng)F2Q 交F1P的延長(zhǎng)線于E,E與F2關(guān)于l對(duì)稱,所以|PE|=|PF2|.所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|=2a,在△EF1F2中,顯然OQ是平行于EF1的中位線,所以|OQ|=
1
2
|EF1|=a,注意到P是橢圓上異于長(zhǎng)軸端點(diǎn)的點(diǎn),易得答案.
(2)問(wèn)題:如圖,雙曲線的方程是:
x2
a2
-
y2
b2
=1(a,b>0),它的左、右焦點(diǎn)依次為F1、F2,P是雙曲線上異于實(shí)軸端點(diǎn)的任意一點(diǎn).設(shè)△PF1F2的過(guò)P角的內(nèi)角平分線為l,自焦點(diǎn)F1引l的垂線,垂足為Q,試求Q點(diǎn)的軌跡方程?并加以證明.利用與(1)類似的方法進(jìn)行證明即可.
解答:精英家教網(wǎng)解:(1)根據(jù)題意:延長(zhǎng)F2Q 交F1P的延長(zhǎng)線于E,
E與F2關(guān)于l對(duì)稱,所以|PE|=|PF2|.
所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|=2a,
在△EF1F2中,顯然OQ是平行于EF1的中位線,
所以|OQ|=
1
2
|EF1|=a,
注意到P是橢圓上異于長(zhǎng)軸端點(diǎn)的點(diǎn),所以Q點(diǎn)的軌跡是 圓(不含橢圓長(zhǎng)軸端點(diǎn)),
其方程是:x2+y2=a2(x≠±a)
故答案為:2a,a,圓,x2+y2=a2(x≠±a).
(2)問(wèn)題:如圖,雙曲線的方程是:
x2
a2
-
y2
b2
=1(a,b>0),它的左、右焦點(diǎn)依次為F1、F2,P是雙曲線上異于實(shí)軸端點(diǎn)的任意一點(diǎn).設(shè)△PF1F2的過(guò)P角的內(nèi)角平分線為l,自焦點(diǎn)F1引l的垂線,垂足為Q,試求Q點(diǎn)的軌跡方程?并加以證明.
證明:延長(zhǎng)F1Q 交F2P的延長(zhǎng)線于E,根據(jù)題意,
E與F1關(guān)于l對(duì)稱,所以|PE|=|PF1|.
所以|EF1|=|PF1|-|PE|=|PF1|-|PF2|=2a,
在△EF1F2中,顯然OQ是平行于EF2的中位線,
所以|OQ|=
1
2
|EF2|=a,
注意到P是橢圓上異于實(shí)軸端點(diǎn)的點(diǎn),所以Q點(diǎn)的軌跡是 圓(不含雙曲線實(shí)軸端點(diǎn)),
其方程是:x2+y2=a2(x≠±a)
點(diǎn)評(píng):本題考查雙曲線和橢圓的標(biāo)準(zhǔn)方程和簡(jiǎn)單性質(zhì),定義的應(yīng)用,得出OQ是平行于EF2的中位線是解題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,短軸兩個(gè)端點(diǎn)為A、B,且四邊形F1AF2B是邊長(zhǎng)為2的正方形.
(1)求橢圓的方程;
(2)若C、D分別是橢圓長(zhǎng)的左、右端點(diǎn),動(dòng)點(diǎn)M滿足MD⊥CD,連接CM,交橢圓于點(diǎn)P.證明:
OM
OP
為定值.
(3)在(2)的條件下,試問(wèn)x軸上是否存異于點(diǎn)C的定點(diǎn)Q,使得以MP為直徑的圓恒過(guò)直線DP、MQ的交點(diǎn),若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>1)右焦點(diǎn)為F,它與直線l:y=k(x+1)相交于P、Q兩點(diǎn),l與x軸的交點(diǎn)M到橢圓左準(zhǔn)線的距離為d,若橢圓的焦距是b與d+|MF|的等差中項(xiàng).
(1)求橢圓離心率e;
(2)設(shè)N與M關(guān)于原點(diǎn)O對(duì)稱,若以N為圓心,b為半徑的圓與l相切,且
OP
OQ
=-
5
3
求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
,且過(guò)點(diǎn)(
2
,1
).
(1)求橢圓的方程;
(2)若過(guò)點(diǎn)C(-1,0)且斜率為k的直線l與橢圓相交于不同的兩點(diǎn)A,B,試問(wèn)在x軸上是否存在點(diǎn)M,使
MA
MB
+
5
3k2+1
是與k無(wú)關(guān)的常數(shù)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l與橢圓
y2
a2
+
x2
b2
=1(a>b>0)
交于A(x1,y1),B(x2,y2)兩點(diǎn),已知
m
=(ax1,by1),
n
=(ax2,by2),若
m
n
且橢圓的離心率e=
3
2
,又橢圓經(jīng)過(guò)點(diǎn)(
3
2
,1)
,O為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)試問(wèn):△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案