21.解:(1)由題意可得直線: ① 查看更多

 

題目列表(包括答案和解析)

已知m>1,直線,橢圓C:,分別為橢圓C的左、右焦點.

(Ⅰ)當直線過右焦點時,求直線的方程;

(Ⅱ)設直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[

【解析】第一問中因為直線經(jīng)過點,0),所以,得.又因為m>1,所以,故直線的方程為

第二問中設,由,消去x,得,

則由,知<8,且有

由題意知O為的中點.由可知從而,設M是GH的中點,則M().

由題意可知,2|MO|<|GH|,得到范圍

 

查看答案和解析>>

 (08年莆田四中一模理)有以下幾個命題:

①由的圖象向右平移個單位長度可以得到的圖象;

②若,則使取得最大值和最小值的最優(yōu)解都有無數(shù)多個;

③若為一平面內(nèi)兩非零向量,則的充要條件;

④過空間上任意一點有且只有一個平面與兩條異面直線都平行。

⑤若橢圓的左、右焦點分別為,是該橢圓上的任意一點,則點關(guān)于的外角平分線的對稱點的軌跡是圓。其中真命題的序號為        .(寫出所有真命題的序號)

 

查看答案和解析>>

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(I)求橢圓的方程;

(II)若過點(2,0)的直線與橢圓相交于兩點,設為橢圓上一點,且滿足O為坐標原點),當 時,求實數(shù)的取值范圍.

【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運用。

第一問中,利用

第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

解:(1)由題意知

 

查看答案和解析>>

設橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標原點.

(Ⅰ)若直線的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線的斜率 滿足

【解析】(1)解:設點P的坐標為.由題意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線OP的方程為,設點P的坐標為.

由條件得消去并整理得  ②

,

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線OP的方程為,設點P的坐標為.

由P在橢圓上,有

因為,,所以,即   ③

,,得整理得.

于是,代入③,

整理得

解得,

所以.

 

查看答案和解析>>

(1)橢圓Ca>b>0)與x軸交于A、B兩點,點P是橢圓C上異于A、B的任意一點,直線PAPB分別與y軸交于點M、N,求證:為定值

(2)由(1)類比可得如下真命題:雙曲線Ca>0,b>0)與x軸交于AB兩點,點P是雙曲線C上異于AB的任意一點,直線PA、PB分別與y軸交于點MN,求證:為定值.請寫出這個定值(不要求給出解題過程).

查看答案和解析>>


同步練習冊答案