(2)已知點(diǎn)在曲線C上.過點(diǎn)A作曲線C的兩條弦AD.AE.且AD.AE的斜率=2.試推斷:動(dòng)直線DE是否過定點(diǎn)?證明你的結(jié)論. 查看更多

 

題目列表(包括答案和解析)

已知點(diǎn)F(a,0)(a>0),直線l:x=-a,點(diǎn)E是l上的動(dòng)點(diǎn),過點(diǎn)E垂直于y軸的直線與線段EF的垂直平分線交于點(diǎn)P.
(1)求點(diǎn)P的軌跡M的方程;
(2)若曲線M上在x軸上方的一點(diǎn)A的橫坐標(biāo)為a,過點(diǎn)A作兩條傾斜角互補(bǔ)的直線,與曲線M的另一個(gè)交點(diǎn)分別為B、C,求證:直線BC的斜率為定值.

查看答案和解析>>

已知點(diǎn)P為圓x2+y2=4上的動(dòng)點(diǎn),且P不在x軸上,PD⊥x軸,垂足為D,線段PD中點(diǎn)Q的軌跡為曲線C,過定點(diǎn)M(t,0)(0<t<2)任作一條與y軸不垂直的直線l,它與曲線C交于A、B兩點(diǎn).
(1)求曲線C的方程;
(2)試證明:在x軸上存在定點(diǎn)N,使得∠ANB總能被x軸平分.

查看答案和解析>>

已知點(diǎn)P是圓x2+y2=1上任意一點(diǎn),過點(diǎn)P作y軸的垂線,垂足為Q,點(diǎn)R滿足
RQ
=
3
PQ
,記點(diǎn)R的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)A(0,1),點(diǎn)M、N在曲線C上,且直線AM與直線AN的斜率之積為
2
3
,求△AMN的面積的最大值.

查看答案和解析>>

已知點(diǎn)(2,2
3
)
在雙曲線M:
x2
m2
-
y2
n2
=1(m>0,n>0)
上,圓C:(x-a)2+(y-b)2=r2(a>0,b∈R,r>0)與雙曲線M的一條漸近線相切于點(diǎn)(1,2),且圓C被x軸截得的弦長(zhǎng)為4.
(Ⅰ)求雙曲線M的方程;
(Ⅱ)求圓C的方程;
(Ⅲ)過圓C內(nèi)一定點(diǎn)Q(s,t)(不同于點(diǎn)C)任作一條直線與圓C相交于點(diǎn)A、B,以A、B為切點(diǎn)分別作圓C的切線PA、PB,求證:點(diǎn)P在定直線l上,并求出直線l的方程.

查看答案和解析>>

已知點(diǎn)P為圓x2+y2=4上的動(dòng)點(diǎn),且P不在x軸上,PD⊥x軸,垂足為D,線段PD中點(diǎn)Q的軌跡為曲線C,過定點(diǎn)M(t,0)(0<t<2)任作一條與y軸不垂直的直線l,它與曲線C交于A、B兩點(diǎn).
(1)求曲線C的方程;
(2)試證明:在x軸上存在定點(diǎn)N,使得∠ANB總能被x軸平分.

查看答案和解析>>


同步練習(xí)冊(cè)答案