(1)是否存在實數(shù)為等比數(shù)列.若存在.求實數(shù)的值,若不存在.說明理由. 查看更多

 

題目列表(包括答案和解析)

數(shù)列{an}滿足a1=2,an+1=λan+2n(n∈N*),其中λ為常數(shù).
(1)是否存在實數(shù)λ,使得數(shù)列{an}為等差數(shù)列或等比數(shù)列?若存在,求出其通項公式;若不存在,說明理由;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

數(shù)列{an}是以a為首項,q為公比的等比數(shù)列.令bn=1-a1-a2-…-an,cn=2-b1-b2-…-bn,n∈N*
(1)試用a、q表示bn和cn;
(2)若a<0,q>0且q≠1,試比較cn與cn+1的大;
(3)是否存在實數(shù)對(a,q),其中q≠1,使{cn}成等比數(shù)列.若存在,求出實數(shù)對(a,q)和{cn};若不存在,請說明理由.

查看答案和解析>>

數(shù)列{an}滿足a1=2,an+1=(λ-3)an+2n,(n=1,2,3…)
(Ⅰ) 當(dāng)a2=-1時,求λ及a3;
(Ⅱ)是否存在實數(shù)λ,使得數(shù)列{an}為等差數(shù)列或等比數(shù)列?若存在,求出其通項公式,若不存在,說明理由.

查看答案和解析>>

數(shù)列{an}是以a為著項,q為公比的等比數(shù)列,令bn=1-a1-a2-a3-…-an,Cn=2-b1-b2-b3-…-bn.n∈N*
(1)試用a,q表示bn和cn;
(2)若a<0,q>0且q≠1,試比較cn與cn+1的大;
(3)是否存在實數(shù)對(a,q),其中q≠1,使{cn}成等比數(shù)列,若存在,求出實數(shù)對(a,q)和{cn}的通項公式;若不存在,請說明理由.

查看答案和解析>>

數(shù)列{an}滿足a1=2,an+1=λan+2n(n∈N*),其中λ為常數(shù).
(1)是否存在實數(shù)λ,使得數(shù)列{an}為等差數(shù)列或等比數(shù)列?若存在,求出其通項公式;若不存在,說明理由;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

 

一、選擇:

1―5AADBA  6―10DCBCB  11―12DA

二、填空

13.2   14.(1)(3)  15.

16.4  17.14  18.

三、解答:

19.解:(1)

      

   (2)

      

      

20.證明:(1)由三視圖可知,平面平面ABCD,

       設(shè)BC中點為E,連結(jié)AE、PE

      

      

       ,PB=PC

      

      

      

//

//

<table id="jipog"><acronym id="jipog"></acronym></table>

  1. <u id="jipog"><sup id="jipog"></sup></u>

    //

          

    四邊形CHFD為平行四邊形,CH//DF

          

           又

           平面PBC

          

           ,DF平面PAD

           平面PAB

    21.解:設(shè)

          

          

           對成立,

           依題有成立

           由于成立

              ①

           由于成立

             

           恒成立

              ②

           綜上由①、②得

     

     

    22.解:設(shè)列車從各站出發(fā)時郵政車廂內(nèi)的郵袋數(shù)構(gòu)成數(shù)列

       (1)

           在第k站出發(fā)時,前面放上的郵袋

           而從第二站起,每站放下的郵袋

           故

          

           即從第k站出發(fā)時,共有郵袋

       (2)

           當(dāng)n為偶數(shù)時,

           當(dāng)n為奇數(shù)時,

    23.解:①

           上為增函數(shù)

           ②增函數(shù)

          

          

          

          

          

           同理可證

          

          

    24.解:(1)假設(shè)存在滿足題意

           則

          

           均成立

          

          

           成立

           滿足題意

       (2)

          

          

          

          

           當(dāng)n=1時,

          

           成立

           假設(shè)成立

           成立

           則

          

          

          

          

          

          

          

          

          

          

           即得成立

           綜上,由數(shù)學(xué)歸納法可知

     

     

     


    同步練習(xí)冊答案