a |
1-q |
1-qn+1 |
1-q |
aq |
(1-q)2 |
q-1+a |
1-q |
aqn+1 |
(1-q)2 |
|
n(na+a-2) |
2 |
a |
1-q |
aqn |
1-q |
a |
1-q |
a |
1-q |
q(1-qn) |
1-q |
aq |
(1-q)2 |
q-1+a |
1-q |
aqn+1 |
(1-q)2 |
a |
1-q |
aqn+1 |
1-q |
a |
1-q |
1-qn+1 |
1-q |
1-qn+1 |
1-q |
a |
1-q |
a |
1-q |
aq |
(1-q)2 |
q-1+a |
1-q |
aqn+1 |
(1-q)2 |
|
q |
1-q |
2 |
3 |
1 |
3 |
1 |
3 |
(
| ||
(1-
|
4 |
3 |
2 |
3 |
1 |
3 |
2 |
3 |
4 |
3 |
2 |
3 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求數(shù)列{an}的首項(xiàng)與遞推關(guān)系式an+1=f(an);
(2)先閱讀下面定理,若數(shù)列{an}有遞推關(guān)系an+1=Aan+B,其中A、B為常數(shù),且A≠1,B≠0,則數(shù)列{an-}是以A為公比的等比數(shù)列,請(qǐng)你在第(1)題的基礎(chǔ)上應(yīng)用本定理,求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{an}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2)若數(shù)列{an}對(duì)于任意的n∈N*都有Sn=2an-n,令f(x)=a1x+a2x2+…+anxn,求函數(shù)f(x)在x=1處的導(dǎo)數(shù).
(文)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知對(duì)于任意的n∈N*,都有Sn=2an-n.
(1)求數(shù)列{an}的首項(xiàng)a1及遞推關(guān)系式:an+1=f(an);
(2)先閱讀下面的定理:“若數(shù)列{an}有遞推關(guān)系an+1=Aan+B,其中A、B為常數(shù),且A≠1,B≠0,
則數(shù)列{an}是以A為公比的等比數(shù)列”.請(qǐng)你在(1)的基礎(chǔ)上應(yīng)用本定理,求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{an}的前n項(xiàng)和Sn.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com