22. 一列火車自A城駛往B城.沿途有n個(gè)車站.車上有一節(jié)郵政車廂.每停靠一站便要卸下前面各站發(fā)往該站的郵袋各一個(gè).同時(shí)又要裝上該站發(fā)往后面各站的郵袋各一個(gè). 試求:(1)列車從第k站出發(fā)時(shí).郵政車廂內(nèi)共有多少郵袋? (2)第幾站的郵袋數(shù)最多.最多是多少? 查看更多

 

題目列表(包括答案和解析)

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

(07年福建卷理)(本小題滿分12分)在中,,

(Ⅰ)求角的大。

(Ⅱ)若最大邊的邊長為,求最小邊的邊長.

查看答案和解析>>

(07年福建卷文)(本小題滿分12分)

設(shè)函數(shù)f(x)=tx2+2t2x+t-1(x∈R,t>0).

(I)求f (x)的最小值h(t);

(II)若h(t)<-2t+m對(duì)t∈(0,2)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

(07年福建卷文)(本小題滿分12分)

如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,DCC1中點(diǎn).

(I)求證:AB1⊥平面A1BD;

(II)求二面角A-A1D-B的大小.

查看答案和解析>>

 

一、選擇:

1―5AADBA  6―10DCBCB  11―12DA

二、填空

13.2   14.(1)(3)  15.

16.4  17.14  18.

三、解答:

19.解:(1)

      

   (2)

      

      

20.證明:(1)由三視圖可知,平面平面ABCD,

       設(shè)BC中點(diǎn)為E,連結(jié)AE、PE

      

      

       ,PB=PC

      

      

      

//

//

<style id="syja7"></style>
  • <li id="syja7"><xmp id="syja7"></xmp></li>
      • <dfn id="syja7"><fieldset id="syja7"><dl id="syja7"></dl></fieldset></dfn>

        <sup id="syja7"></sup>

        //

              

        四邊形CHFD為平行四邊形,CH//DF

              

               又

               平面PBC

              

               ,DF平面PAD

               平面PAB

        21.解:設(shè)

              

              

               對(duì)成立,

               依題有成立

               由于成立

                  ①

               由于成立

                 

               恒成立

                  ②

               綜上由①、②得

         

         

        22.解:設(shè)列車從各站出發(fā)時(shí)郵政車廂內(nèi)的郵袋數(shù)構(gòu)成數(shù)列

           (1)

               在第k站出發(fā)時(shí),前面放上的郵袋個(gè)

               而從第二站起,每站放下的郵袋個(gè)

               故

              

               即從第k站出發(fā)時(shí),共有郵袋

           (2)

               當(dāng)n為偶數(shù)時(shí),

               當(dāng)n為奇數(shù)時(shí),

        23.解:①

               上為增函數(shù)

               ②增函數(shù)

              

              

              

              

              

               同理可證

              

              

        24.解:(1)假設(shè)存在滿足題意

               則

              

               均成立

              

              

               成立

               滿足題意

           (2)

              

              

              

              

               當(dāng)n=1時(shí),

              

               成立

               假設(shè)成立

               成立

               則

              

              

              

              

              

              

              

              

              

              

               即得成立

               綜上,由數(shù)學(xué)歸納法可知

         

         

         


        同步練習(xí)冊答案