9.下列命題中: 查看更多

 

題目列表(包括答案和解析)

下列命題中:
①函數(shù)f(x)=sinx+
2
sinx
(x∈(0,π))的最小值是2
2

②在△ABC中,若sin2A=sin2B,則△ABC是等腰或直角三角形:
③如果正實數(shù)a,b,c滿足a+b>c,則
a
1+a
+
b
1+b
c
1+c
;其中正確的命題是( 。
A、①②③B、①C、②③D、③

查看答案和解析>>

下列命題中:
①若a與b互為相反向量,則a+b=0;
②若k為實數(shù),且k•a=0,則a=0或k=0;
③若a•b=0,則a=0或b=0;
④若a與b為平行的向量,則a•b=|a||b|;
⑤若|a|=1,則a=±1.
其中假命題的個數(shù)為(  )
A、5個B、4個C、3個D、2個

查看答案和解析>>

下列命題中:①函數(shù),f(x)=sinx+
2
sinx
(x∈(0,π))的最小值是2
2
;②在△ABC中,若sin2A=sin2B,則△ABC是等腰或直角三角形;③如果正實數(shù)a,b,c滿足a + b>c則
a
1+a
+
b
1+b
c
1+c
;④如果y=f(x)是可導函數(shù),則f′(x0)=0是函數(shù)y=f(x)在x=x0處取到極值的必要不充分條件.其中正確的命題是( 。
A、①②③④B、①④
C、②③④D、②③

查看答案和解析>>

下列命題中:
①若a,b,m都是正數(shù),且
a+m
b+m
a
b
,則b>a;      
②已知a,b都為實數(shù),若|a+b|<|a|+|b|,則ab<0;       
 ③若a,b,c為△ABC的三條邊,則a2+b2+c2>2(ab+bc+ca);
④若a>b>c,則
1
a-b
+
1
b-c
+
1
c-a
>0.
其中正確命題的個數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

下列命題中:
①命題“?x∈R,x2≥0”的否定是“?x∈R,x2≤0”;
②線性相關系數(shù)r的絕對值越接近于1,表明兩個變量線性相關程度越強;
③若n?a,m∥n,則m∥a;
④“a=
25
”是“直線ax+2y+3a=0與直線3x+(a-1)y+7-a=0相互垂直”的充要條件.
其中真命題的序號是
 
.(請?zhí)钌纤姓婷}的序號)

查看答案和解析>>

         天津精通高考復讀學校數(shù)學教研組組長  么世濤

一、選擇題 :1-4, BBBB ;5-8,DABD。

提示:1.

2.

3.用代替

4.

5.,

6.

7.略

8.     

二、填空題:9.60;  10. 15:10:20   ;  11.;  12.;

13.0.74  ; 14. ①、;②、圓;③.

提示: 9.

10.,,

11.,

12.,

,

13.

14.略

 

三、解答題

15. 解:(1).    

  (2)設抽取件產(chǎn)品作檢驗,則,  

    ,得:,即

   故至少應抽取8件產(chǎn)品才能滿足題意.  

16. 解:由題意得,,原式可化為,

   

故原式=.

17. 解:(1)顯然,連接,∵,

.由已知,∴,.

 ∵, ,

.

 ∴.        

 (2)     

當且僅當時,等號成立.此時,即的中點.于是由,知平面,是其交線,則過

。

 ∴就是與平面所成的角.由已知得,,

 ∴, , .      

(3) 設三棱錐的內(nèi)切球半徑為,則

,,,

 ∴.     

18. (1)    

(2) ∵ ,

∴當時,      

∴當時,,  

,,,.

的最大值為中的最大者.

∴ 當時,有最大值為

19.(1)解:∵函數(shù)的圖象過原點,

,

.      

又函數(shù)的圖象關于點成中心對稱,

.

(2)解:由題意有  即,

 即,即.

 ∴數(shù)列{}是以1為首項,1為公差的等差數(shù)列.

 ∴,即. ∴.

  ∴ ,,,

(3)證明:當時,   

 故       

20. (1)解:∵,又,

    ∴.             又∵     

    ,且

.        

(2)解:由,猜想

    (3)證明:用數(shù)學歸納法證明:

    ①當時,,猜想正確;

    ②假設時,猜想正確,即

1°若為正奇數(shù),則為正偶數(shù),為正整數(shù),

   

   2°若為正偶數(shù),則為正整數(shù),

,又,且

所以

即當時,猜想也正確          

   

由①,②可知,成立.     

(二)

一、1-4,AABB,5-8,CDCB;

提示: 1.  即   

2.   即

3.   即,也就是

4.先確定是哪兩個人的編號與座位號一致,有種情況,如編號為1的人坐1號座位,且編號為2的人坐2號座位有以下情形:

  • <ol id="3kxkk"></ol>
      • 人的編號

        1

        2

        3

        4

        5

        座位號

        1

        2

        5

        3

        4

         

        人的編號

        1

        2

        3

        4

        5

        座位號

        1

        2

        4

        5

        3

         

                                                         

         

         

        所以,符合條件的共有10×2=20種。

        5. ,又,所以

        ,且,所以

        6.略

        7.略

        8. 密文shxc中的s對應的數(shù)字為19,按照變換公式:

        ,原文對應的數(shù)字是12,對應的字母是;

        密文shxc中的h對應的數(shù)字為8,按照變換公式:

        ,原文對應的數(shù)字是15,對應的字母是;

        二、9.; 10.2;11.-48; 12. ; 13、5; 14、①3,②,③

        提示:

        9.  ,,

        10. 數(shù)列是首相為,公差為的等差數(shù)列,于是

          又,所以

        11. 特殊值法。取通徑,則,

        。

        12.因,所以同解于

        所以

        13.略 。

         

        14、(1)如圖:∵

        ∴∠1=∠2=∠3=∠P+∠PFD          

        =∠FEO+∠EFO

        ∴∠FEO=∠P,可證△OEF∽△DPF

        即有,又根據(jù)相交弦定理DF?EF=BF?AF

        可推出,從而

        ∴PF=3

        (2) ∵PFQF,  ∴  ∴

        (3)略。

        三、15.解:(1)  依題知,得  

        文本框: 子曰:三人行,必有我?guī)熝桑簱衿渖普叨鴱闹,其不善者而改之。精通?nèi)部學員使用么老師答疑電話
13702071025
 所以

        (2) 由(1)得

            

        ∴            

        的值域為。

         

        16.解:設飛機A能安全飛行的概率為,飛機B能安全飛行的概率為,則

          所以

        時,,;

        時,,;

        時,,,

        故當時,飛機A安全;當時,飛機A與飛機B一樣安全;當時,飛機B安全。

         

        17.(1) 證明:以D為坐標原點,DA所在的直線x

        軸,建立空間直角坐標系如圖。

        ,則

        ,,

        ,所以

                            即  ,也就是

        ,所以 ,即。

        (2)解:方法1、找出二面角,再計算。

         

        方法2、由(1)得:(當且僅當取等號)

        分別為的中點,于是 ,

        ,所以

        是平面的一個法向量,則

          也就是

        易知是平面的一個法向量,

                           

        18.(1) 證明:依題知得:

        整理,得

         所以   即 

        故 數(shù)列是等差數(shù)列。

        (2) 由(1)得   即 ()

          所以

         =

        =

         

        19.解:(1) 依題知得

        欲使函數(shù)是增函數(shù),僅須

        同步練習冊答案