(2)已知圓,直線.試證明當(dāng)點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),直線與圓恒相交,并求直線被圓所截得的弦長(zhǎng)的取值范圍. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長(zhǎng)軸,離心率為
2
2
的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連接PF,過原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓O相切;
(3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說明理由.

查看答案和解析>>

已知圓O:軸于A,B兩點(diǎn),曲線C是以為長(zhǎng)軸,離心率為的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連結(jié)PF,過原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓相切;

(Ⅲ)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說明理由.

查看答案和解析>>

已知橢圓C:數(shù)學(xué)公式(a>b>0)經(jīng)過點(diǎn)(數(shù)學(xué)公式數(shù)學(xué)公式),一個(gè)焦點(diǎn)是F(0,-數(shù)學(xué)公式).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C與y軸的兩個(gè)交點(diǎn)為A1、A2,點(diǎn)P在直線y=a2上,直線PA1、PA2分別與橢圓C交于M、N兩點(diǎn).試問:當(dāng)點(diǎn)P在直線y=a2上運(yùn)動(dòng)時(shí),直線MN是否恒經(jīng)過定點(diǎn)Q?證明你的結(jié)論.

查看答案和解析>>

已知橢圓C:
y2
a2
+
x2
b2
=1
(a>b>0)經(jīng)過點(diǎn)(
1
2
3
),一個(gè)焦點(diǎn)是F(0,-
3
).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C與y軸的兩個(gè)交點(diǎn)為A1、A2,點(diǎn)P在直線y=a2上,直線PA1、PA2分別與橢圓C交于M、N兩點(diǎn).試問:當(dāng)點(diǎn)P在直線y=a2上運(yùn)動(dòng)時(shí),直線MN是否恒經(jīng)過定點(diǎn)Q?證明你的結(jié)論.

查看答案和解析>>

已知橢圓C:(a>b>0)經(jīng)過點(diǎn)(),一個(gè)焦點(diǎn)是F(0,-).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C與y軸的兩個(gè)交點(diǎn)為A1、A2,點(diǎn)P在直線y=a2上,直線PA1、PA2分別與橢圓C交于M、N兩點(diǎn).試問:當(dāng)點(diǎn)P在直線y=a2上運(yùn)動(dòng)時(shí),直線MN是否恒經(jīng)過定點(diǎn)Q?證明你的結(jié)論.

查看答案和解析>>

一、選擇題:

    • <dfn id="tgvw4"><strong id="tgvw4"></strong></dfn>
        <li id="tgvw4"></li>

        • 2,4,6

          二、填空題:

          13、  14、 15、75  16、  17、②  18、④   19、

          20、21、22、23、24、25、

          26、

          三、解答題:

          27解:(1)當(dāng)時(shí),

          ,∴上是減函數(shù).

          (2)∵不等式恒成立,即不等式恒成立,

          不等式恒成立. 當(dāng)時(shí),  不恒成立;

          當(dāng)時(shí),不等式恒成立,即,∴.

          當(dāng)時(shí),不等式不恒成立. 綜上,的取值范圍是.

          28解:(1)

          (2)20 

          20與=3解得b=4,c=5或b=5,c= 4

          (3)設(shè)D到三邊的距離分別為x、y、z,則 

           又x、y滿足

          畫出不等式表示的平面區(qū)域得: 

          29(1)證明:連結(jié),則//,  

          是正方形,∴.∵,∴

          ,∴.  

          ,∴,

          (2)證明:作的中點(diǎn)F,連結(jié)

          的中點(diǎn),∴,

          ∴四邊形是平行四邊形,∴

          的中點(diǎn),∴,

          ,∴

          ∴四邊形是平行四邊形,//,

          ,,

          ∴平面

          平面,∴

          (3)

          . 

          30解: (1)由,

          ,

          則由,解得F(3,0) 設(shè)橢圓的方程為,

          ,解得 所以橢圓的方程為  

          (2)因?yàn)辄c(diǎn)在橢圓上運(yùn)動(dòng),所以,   從而圓心到直線的距離. 所以直線與圓恒相交

          又直線被圓截得的弦長(zhǎng)為

          由于,所以,則,

          即直線被圓截得的弦長(zhǎng)的取值范圍是

          31解:(1)g(t) 的值域?yàn)閇0,]

          (2)

          (3)當(dāng)時(shí),+=<2;

          當(dāng)時(shí),.

          所以若按給定的函數(shù)模型預(yù)測(cè),該市目前的大氣環(huán)境綜合指數(shù)不會(huì)超標(biāo)。

          32解:(1)

           當(dāng)時(shí),時(shí),,

           

           的極小值是

          (2),要使直線對(duì)任意的都不是曲線的切線,當(dāng)且僅當(dāng)時(shí)成立,

          (3)因最大值

           ①當(dāng)時(shí),

           

            ②當(dāng)時(shí),(?)當(dāng)

           

          (?)當(dāng)時(shí),單調(diào)遞增;

          1°當(dāng)時(shí),

          2°當(dāng)

          (?)當(dāng)

          (?)當(dāng)

          綜上 

           

           


          同步練習(xí)冊(cè)答案