(2)由題意過點(diǎn)的切線斜率為.則 查看更多

 

題目列表(包括答案和解析)

已知橢圓),其焦距為,若),則稱橢圓為“黃金橢圓”.

(1)求證:在黃金橢圓)中,、成等比數(shù)列.

(2)黃金橢圓)的右焦點(diǎn)為,為橢圓上的

任意一點(diǎn).是否存在過點(diǎn)、的直線,使軸的交點(diǎn)滿足?若存在,求直線的斜率;若不存在,請說明理由.

(3)在黃金橢圓中有真命題:已知黃金橢圓)的左、右焦點(diǎn)分別是、,以、、、為頂點(diǎn)的菱形的內(nèi)切圓過焦點(diǎn)、.試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關(guān)的真命題,并加以證明.

 

查看答案和解析>>

已知橢圓),其焦距為,若),則稱橢圓為“黃金橢圓”.
(1)求證:在黃金橢圓)中,、成等比數(shù)列.
(2)黃金橢圓)的右焦點(diǎn)為,為橢圓上的
任意一點(diǎn).是否存在過點(diǎn)、的直線,使軸的交點(diǎn)滿足?若存在,求直線的斜率;若不存在,請說明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓)的左、右焦點(diǎn)分別是,以、、為頂點(diǎn)的菱形的內(nèi)切圓過焦點(diǎn)、.試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關(guān)的真命題,并加以證明.

查看答案和解析>>

已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

(Ⅰ)求實(shí)數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

【解析】第一問當(dāng)時(shí),,則。

依題意得:,即    解得

第二問當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

(Ⅰ)當(dāng)時(shí),,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時(shí),,令

當(dāng)變化時(shí),的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,,。∴上的最大值為2.

②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

當(dāng)時(shí), 上單調(diào)遞增!最大值為

綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。

(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時(shí),

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

 

查看答案和解析>>

已知橢圓C:(a>b>0),其焦距為2c,若(≈0.618),則稱橢圓C為“黃金橢圓”.

(1)求證:在黃金橢圓C:(a>b>0)中,a、b、c成等比數(shù)列.

(2)黃金橢圓C:(a>b>0)的右焦點(diǎn)為F2(c,0),P為橢圓C上的

任意一點(diǎn).是否存在過點(diǎn)F2、P的直線l,使l與y軸的交點(diǎn)R滿足?若存在,求直線l的斜率k;若不存在,請說明理由.

(3)在黃金橢圓中有真命題:已知黃金橢圓C:(a>b>0)的左、右焦點(diǎn)分別是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)為頂點(diǎn)的菱形ADBE的內(nèi)切圓過焦點(diǎn)F1、F2

試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關(guān)的真命題,并加以證明.

查看答案和解析>>

已知橢圓C:(a>b>0),其焦距為2c,若(≈0.618),則稱橢圓C為“黃金橢圓”.
(1)求證:在黃金橢圓C:(a>b>0)中,a、b、c成等比數(shù)列.
(2)黃金橢圓C:(a>b>0)的右焦點(diǎn)為F2(c,0),P為橢圓C上的任意一點(diǎn).是否存在過點(diǎn)F2、P的直線l,使l與y軸的交點(diǎn)R滿足?若存在,求直線l的斜率k;若不存在,請說明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓C:(a>b>0)的左、右焦點(diǎn)分別是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)為頂點(diǎn)的菱形ADBE的內(nèi)切圓過焦點(diǎn)F1、F2.試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關(guān)的真命題,并加以證明.

查看答案和解析>>


同步練習(xí)冊答案