題目列表(包括答案和解析)
3 |
3 |
1 |
4 |
DA |
DC |
|
假設(shè)一個人從出生到死亡,在每個生日都測量身高,并作出這些數(shù)據(jù)散點圖,則這些點將不會落在一條直線上,但在一段時間內(nèi)的增長數(shù)據(jù)有時可以用線性回歸來分析.下表是一位母親給兒子作的成長記錄:
年齡/周歲 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
身高/cm | 90.8 | 97.6 | 104.2 | 110.9 | 115.6 | 122.0 | 128.5 |
年齡/周歲 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
身高/cm | 134.2 | 140.8 | 147.6 | 154.2 | 160.9 | 167.6 | 173.0 |
(1)作出這些數(shù)據(jù)的散點圖;
(2)求出這些數(shù)據(jù)的回歸方程;
(3)對于這個例子,你如何解釋回歸系數(shù)的含義?
(4)用下一年的身高減去當(dāng)年的身高,計算他每年身高的增長數(shù),并計算他從3~16歲身高的年均增長數(shù).
(5)解釋一下回歸系數(shù)與每年平均增長的身高之間的聯(lián)系.
“地溝油”嚴(yán)重危害了人民群眾的身體健康,某企業(yè)在政府部門的支持下,進行技術(shù)攻關(guān),新上了一種從“食品殘渣”中提煉出生物柴油的項目,經(jīng)測算,該項目月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可以近似的表示為:
且每處理一噸“食品殘渣”,可得到能利用的生物柴油價值為200元,若該項目不獲利,政府將補貼.
(1)當(dāng)x∈[200,300]時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損;
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?
已知某種生物藥劑的最佳加入量在20g到30g之間.若用0.618法安排試驗,則第一次試點的加入量可以是 .
1. 2. 3.{(1,-1)} 4.12 5.
6. 7. 8.直角
9.解析:(1)(4).本題考查了獨立性檢驗的基本思想及常用邏輯用語.由題意,得,,所以,只有第一位同學(xué)的判斷正確,即:有的把握認為“這種血清能起到預(yù)防感冒的作用”.由真值表知(1)(4)為真命題.
10.提示:設(shè)四棱錐的兩組不相鄰的側(cè)面的交線分別為 m、n, 直線 m、n 確定了一個平面 β.作與 β 平行的平面 α, 與四棱錐的各個側(cè)面相截,則截得的四邊形必為平行四邊形.而這樣的平面 α 有無數(shù)多個.
11. 12.y=-x ±
13.解:由可化為xy =8+x+y
x,y均為正實數(shù), xy =8+x+y(當(dāng)且僅當(dāng)x=y等號成立)
即xy-2-8可解得,即xy16故xy的最小值為16.
14.
15.解:(1)A中2張錢幣取1張,有2種情況,
B中3張錢幣取1張,有3種情況,
∴互換一次有2´3 = 6種情況,
其中10元幣恰是一張的情況有3種,
∴A袋中10元錢幣恰是一張的概率為P1 =.答略
(2)A袋中恰有一張10元幣的概率為P1 = ;
A袋中恰有兩張10元幣的概率為P2 = ;
∴ A袋中10元錢幣至少是一張的概率P = P1 + P2 = + = .
另解:. A袋中恰有0張10元幣的概率為P0 = ,
∴A袋中10元錢幣至少是一張的概率P = 1 ? P0 = .答略.
16.解:(1)證明:取PB中點Q,連結(jié)MQ、NQ,因為M、N分別是棱AD、PC中點,所以
QN//BC//MD,且QN=MD,于是DN//MQ.
.
(2)
又因為底面ABCD是、邊長為的菱形,且M為AD中點,
所以.
又
所以.
(3)因為M是AD中點,所以點A與D到平面PMB等距離.
過點D作于H,由(2)平面PMB平面PAD,所以.
故DH是點D到平面PMB的距離.
所以點A到平面PMB的距離為.
17.解:(1)設(shè)中角的對邊分別為,則由,
可得,所以
(2)
因為,,所以
即當(dāng)時,;當(dāng)時,
18.解:(1)直線l1: x+my-m-2=0與l2: mx-y
整理得:
(2)當(dāng)AB與OM垂直于點P時,由垂徑定理得點P為OM中點(1,),不妨取OA中點Q(,0),又m,否則AM垂直x軸,四邊形AMBO為矩形,AB與OM不垂直,所以,,,得證.
19.解:(1)當(dāng)n為奇數(shù)時,有2n+1=(2+1)(2n-1-2n-2+…-2+1)=3(2n-1-2n-2+…-2+1)
所以2n+1是最小的數(shù);又2n+1-1=(2n+1+2)-3=2(2n+1)-3,所以2n+1-1是最大的數(shù).
(2)由(1)知當(dāng)n為奇數(shù)時,An中的各個元素組成以2n+1為首項,3為公差的等差數(shù)列,設(shè)項數(shù)為m,則2n+1-1=2n+1+3(m-1),所以m=,所以當(dāng)n是奇數(shù)時,An中的所有元素之和為;
當(dāng)n為偶數(shù)時,n-1時奇數(shù),由(1)可知2n-1+1是3的倍數(shù),因此2n+2=2(2n-1+1)是3的倍數(shù);同理,2n+1-2=2(2n-1)是3的倍數(shù).所以當(dāng)n為偶數(shù)時,An中的各個元素組成以2n+2為首項,3為公差的等差數(shù)列,設(shè)項數(shù)為m,則2n+1-2=2n+2+3(m-1),所以m=,所以當(dāng)n是偶數(shù)時,An中的所有元素之和為.
20.解:(1),∴可設(shè),
因而 ①
=,
∵在區(qū)間內(nèi)單調(diào)遞減,
∴在上的函數(shù)值非正,
由于,對稱軸,故只需,注意到,∴,得或(舍去).
故所求的取值范圍是.
(2)時,方程僅有一個實數(shù)根,即證方程 僅有一個實數(shù)根.令,由,得,,易知在,上遞增,在上遞減,的極大值,故函數(shù)的圖像與軸僅有一個交點,∴時,方程僅有一個實數(shù)根,得證.
(3)設(shè) = x2+x+1, =1,對稱軸為,.
由題意,得或
解出,故使||≤3成立的充要條件是
附加題:
1.證明:如圖,分別過點E、F作AB的垂線,G、H為垂足,連FA、EB.易知
DB2=FB2=AB?HB,
AD2=AE2=AG?AB.
二式相減,得
DB2-AD2=AB?(HB-AG),
或 (DB-AD)?AB=AB?(HB-AG).
于是,DB-AD=HB-AG,
或 DB-HB=AD-AG.
就是DH=GD.
顯然,EG∥CD∥FH.
故CD平分EF.2.
2.解:由上題可知1 =,2 =是矩陣M= 分別對應(yīng)特征值1=1,2=4的兩個特征向量,而1與2不共線.又==3+(-2)
∴M20=
M20(32+(-2)1)=
=32202+(-2)×1201=3×420×+(-2)×120×
=≈
答:20個時段后這兩個種群的數(shù)量都趨向于3×420.
3.證明:以F為極點,極軸與x軸正向重合建立極坐標(biāo)系.
設(shè)拋物線方程,A(ρ1,θ),B(ρ2,θ+π),
則AB=ρ1+ρ2= = 4p,sin2θ=,θ=
4.(Ⅰ)證明:(?)當(dāng)時,原不等式成立;當(dāng)時,左邊,右邊,因為,所以左邊右邊,原不等式成立;
(?)假設(shè)當(dāng)時,不等式成立,即,則當(dāng)時,
,,于是在不等式兩邊同乘以得
,
所以.即當(dāng)時,不等式也成立.
綜合(?)(?)知,對一切正整數(shù),不等式都成立.
5.(1)設(shè)事件為A,則在7次拋骰子中出現(xiàn)5次奇數(shù),2次偶數(shù)
而拋骰子出現(xiàn)的奇數(shù)和偶數(shù)的概率為p是相等的,且為
根據(jù)獨立重復(fù)試驗概率公式:
(2)若
即前2次拋骰子中都是奇數(shù)或都是偶數(shù).
若前2次都是奇數(shù),則必須在后5次中拋出3次奇數(shù)2次偶數(shù),
其概率:
若前2次都是偶數(shù),則必須在后5次中拋出5次奇數(shù),其概率:
所求事件的概率
6.以下解答僅供參考,按學(xué)生實際解答給分.
解:(1)條直線將一個平面最多分成個部分(),與(2)合并證明;
(2)個平面最多將空間分割成個部分().
證明:設(shè)個維空間可將維空間最多分成個部分,則只需證明
,這里∈
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com