題目列表(包括答案和解析)
(本小題滿(mǎn)分14分)已知函數(shù)=+有如下性質(zhì):如果常數(shù)>0,那么該
函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).
(1)如果函數(shù)=+(>0)的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052422081064063640/SYS201205242209514375278025_ST.files/image008.png">6,+∞,求的值;
(2)研究函數(shù)=+(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說(shuō)明理由;
(3)對(duì)函數(shù)=+和=+(常數(shù)>0)作出推廣,使它們都是你所推廣的
函數(shù)的特例.
(4)(理科生做)研究推廣后的函數(shù)的單調(diào)性(只須寫(xiě)出結(jié)論,不必證明),并求函數(shù)=+(是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你
的研究結(jié)論).
(本小題滿(mǎn)分14分)已知函數(shù)=+有如下性質(zhì):如果常數(shù)>0,那么該
函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).
(1)如果函數(shù)=+(>0)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d8/1/skgw31.gif" style="vertical-align:middle;" />6,+∞,求的值;
(2)研究函數(shù)=+(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說(shuō)明理由;
(3)對(duì)函數(shù)=+和=+(常數(shù)>0)作出推廣,使它們都是你所推廣的
函數(shù)的特例.
(4)(理科生做)研究推廣后的函數(shù)的單調(diào)性(只須寫(xiě)出結(jié)論,不必證明),并求函數(shù)=+(是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你
的研究結(jié)論).
(文科)(本題滿(mǎn)分14分)設(shè)函數(shù)f(x)=·,其中=(m,cos2x),=(1+sin2x,1),x∈R,且函數(shù)y=f(x)的圖象經(jīng)過(guò)點(diǎn)(,2).
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)求函數(shù)f(x)的最小值及此時(shí)x值的集合
(理科)(本題滿(mǎn)分14分)已知函數(shù)f(x)=ex-kx,x∈R
(Ⅰ)若k=e,試確定函數(shù)f(x)的單調(diào)區(qū)間
(Ⅱ)若k>0,且對(duì)于任意x∈R,f(|x|)>0恒成立,試確定實(shí)數(shù)k的取值范圍
(文科)(本題滿(mǎn)分14分)設(shè)函數(shù)f(x)=·,其中=(m,cos2x),=(1+sin2x,1),x∈R,且函數(shù)y=f(x)的圖象經(jīng)過(guò)點(diǎn)(,2).
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)求函數(shù)f(x)的最小值及此時(shí)x值的集合
(理科)(本題滿(mǎn)分14分)已知函數(shù)f(x)=ex-kx,x∈R
(Ⅰ)若k=e,試確定函數(shù)f(x)的單調(diào)區(qū)間
(Ⅱ)若k>0,且對(duì)于任意x∈R,f(|x|)>0恒成立,試確定實(shí)數(shù)k的取值范圍
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com