已知橢圓.直線:.P是上一點(diǎn).射線OP交橢圓于點(diǎn)R.又點(diǎn)Q在OP上且滿足|OQ|·|OP|=|OR|2.當(dāng)P在上移動時(shí).求點(diǎn)Q的軌跡方程.并說明軌跡是什么曲線. 查看更多

 

題目列表(包括答案和解析)

已知橢圓,其長軸為A1A,P是橢圓上不同于的A1、A的一個(gè)動點(diǎn),直線PA、PA1分別與同一條準(zhǔn)線l交于M、M1兩點(diǎn),試證明:以線段MM1為直徑的圓必經(jīng)過橢圓外的 一個(gè)定點(diǎn)。

查看答案和解析>>

已知橢圓和直線l:x+2y+m=0

(Ⅰ)當(dāng)m=4時(shí),若點(diǎn)P是橢圓上一點(diǎn),求點(diǎn)P到直線l距離的最大值;

(Ⅱ)當(dāng)m=-2時(shí),直線l與橢圓交于A、B兩點(diǎn),求|AB|.

查看答案和解析>>

已知橢圓C:
x2
a2
+
y2
b2
=1 (a>b>0)
的左右焦點(diǎn)分別為F1,F(xiàn)2
(1)若橢圓C上的點(diǎn)A(1,
3
2
)到F1,F(xiàn)2的距離之和為4,求橢圓C的方程和焦點(diǎn)的坐標(biāo);
(2)若M,N是C上關(guān)于(0,0)對稱的兩點(diǎn),P是C上任意一點(diǎn),直線PM,PN的斜率都存在,記為kPM,kPN,求證:kPM與kPN之積為定值.

查看答案和解析>>

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,其左、右焦點(diǎn)分別為F1、F2,點(diǎn)P是橢圓上一點(diǎn),且
PF1
PF2
=0
,|OP|=1(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)S(0,-
1
3
)
且斜率為k的動直線l交
橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出M的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

精英家教網(wǎng)已知橢圓C:
x2
2
+y2=1
的左、右焦點(diǎn)分別為F1,F(xiàn)2,下頂點(diǎn)為A,點(diǎn)P是橢圓上任一點(diǎn),⊙M是以PF2為直徑的圓.
(Ⅰ)當(dāng)⊙M的面積為
π
8
時(shí),求PA所在直線的方程;
(Ⅱ)當(dāng)⊙M與直線AF1相切時(shí),求⊙M的方程;
(Ⅲ)求證:⊙M總與某個(gè)定圓相切.

查看答案和解析>>


同步練習(xí)冊答案