已知橢圓,其長(zhǎng)軸為A1A,P是橢圓上不同于的A1、A的一個(gè)動(dòng)點(diǎn),直線PA、PA1分別與同一條準(zhǔn)線l交于M、M1兩點(diǎn),試證明:以線段MM1為直徑的圓必經(jīng)過(guò)橢圓外的 一個(gè)定點(diǎn)。

解析:由已知,可設(shè)一條準(zhǔn)線l的方程為

橢圓上動(dòng)點(diǎn)P的坐標(biāo)為(

直線PA的方程為

解方程組 

解方程組 …………….5分

設(shè)線段MM1的中點(diǎn)為Q

=    ………………….10分

MM1=

=

故以線段MM1為直徑的圓的方程為

      …………………15分

令y=0,得

        =

所以

可見(jiàn),以線段MM1為直徑的圓必經(jīng)過(guò)橢圓外的一個(gè)定點(diǎn)(………20分

當(dāng)l為左準(zhǔn)線時(shí),也有相應(yīng)的結(jié)論。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•浦東新區(qū)三模)第一題滿分4分,第二題滿分6分,第三題滿分8分.
已知橢圓C的長(zhǎng)軸長(zhǎng)是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個(gè)交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓C的方程;
(2)在(1)的條件下,直線l過(guò)焦點(diǎn)F2,與拋物線M交于A、B兩點(diǎn),若弦長(zhǎng)|AB|等于△PF1F2的周長(zhǎng),求直線l的方程;
(3)是否存在實(shí)數(shù)m,使得△PF1F2的邊長(zhǎng)為連續(xù)的自然數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓,其長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,右準(zhǔn)線方程為x =

(1)求該橢圓方程,

(2)如過(guò)點(diǎn)(0,m),且傾斜角為的直線L與橢圓交于A、B兩點(diǎn),當(dāng)△AOBO為原點(diǎn))面積最大時(shí),求m的值.(12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓,其長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,右準(zhǔn)線方程為x =.[來(lái)

(1)求該橢圓方程,

(2)如過(guò)點(diǎn)(0,m),且傾斜角為的直線L與橢圓交于A、B兩點(diǎn),當(dāng)△AOBO為原點(diǎn))面積最大時(shí),求m的值.(本題滿分12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年甘肅省高二上學(xué)期末理科數(shù)學(xué)卷 題型:解答題

已知橢圓,其長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,右準(zhǔn)線方程為x =

(1)求該橢圓方程,

(2)如過(guò)點(diǎn)(0,m),且傾斜角為的直線L與橢圓交于A、B兩點(diǎn),當(dāng)△AOB(O為原點(diǎn))面積最大時(shí),求m的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案