6.正態(tài)分布 正態(tài)分布密度函數(shù):.均值為Eε=μ.方差為. 正態(tài)曲線具有以下性質(zhì): (1)曲線在x軸的上方.與x軸不相交 (2)曲線關(guān)于直線x =μ對(duì)稱 (3)曲線在x =μ時(shí)位于最高點(diǎn). (4)當(dāng)x <μ時(shí).曲線上升,當(dāng)x >μ時(shí).曲線下降.并且當(dāng)曲線向左.右兩邊無(wú)限延伸時(shí).以x軸為漸近線.向它無(wú)限靠近. (5)當(dāng)μ一定時(shí).曲線的形狀由σ確定.σ越大.曲線越“矮胖 .表示總體越分散,σ越小.曲線越“瘦高 .表示總體的分布越集中. 從理論上講.服從正態(tài)分布的隨機(jī)變量的取值范圍是R.但實(shí)際上取區(qū)間外的數(shù)值的可能性微乎其微.在實(shí)際問題中常常認(rèn)為它是不會(huì)發(fā)生的.因此.往往認(rèn)為它的取值是個(gè)有限區(qū)間.即區(qū)間.這即實(shí)用中的三倍標(biāo)準(zhǔn)差規(guī)則.也叫3σ規(guī)則.在企業(yè)管理中.經(jīng)常應(yīng)用這個(gè)規(guī)則進(jìn)行產(chǎn)品質(zhì)量檢查和工藝生產(chǎn)過程控制. 查看更多

 

題目列表(包括答案和解析)

給出下列命題:
①在頻率分布直方圖中估計(jì)平均數(shù),可以用每個(gè)小矩形的高乘以底邊的中點(diǎn)的橫坐標(biāo)之和;
②隨機(jī)誤差e是衡量預(yù)報(bào)精確度的一個(gè)量,它滿足E(e)=0;
③某隨機(jī)變量X服從正態(tài)分布,其密度函數(shù)是φ(x)=
1
σ
e-
(x-μ)2
2σ2
(x∈R),σ越小,則X集中在μ周圍的概率越大;
④a,b是兩條異面直線,P為空間一點(diǎn),過P總可以作一個(gè)平面與a,b之一垂直,與另一條平行;
⑤如果三棱錐S-ABC的各條棱長(zhǎng)均為1,則該三棱錐在任意一個(gè)平面內(nèi)的射影的面積都不大于
1
2

其中真命題的是
①②③⑤
①②③⑤
.(寫出所有正確命題的編號(hào))

查看答案和解析>>


同步練習(xí)冊(cè)答案