2.求證:兩圓x2+y2-4x-6y+9=0和x2+y2+12x+6y-19=0相外切. 查看更多

 

題目列表(包括答案和解析)

(2012•上海)在平面直角坐標(biāo)系xOy中,已知雙曲線C:2x2-y2=1.
(1)設(shè)F是C的左焦點,M是C右支上一點,若|MF|=2
2
,求點M的坐標(biāo);
(2)過C的左焦點作C的兩條漸近線的平行線,求這兩組平行線圍成的平行四邊形的面積;
(3)設(shè)斜率為k(|k|<
2
)的直線l交C于P、Q兩點,若l與圓x2+y2=1相切,求證:OP⊥OQ.

查看答案和解析>>

精英家教網(wǎng)如圖,過圓x2+y2=4與x的兩個交點A、B,作圓的切線AC、BD,再過圓上任意一點H作圓的切線,交AC、BD于C、D兩點,設(shè)AD、BC的交點為R.
(1)求動點R的軌跡E方程;
(2)過曲線E的右焦點作直線l交曲線E于M、N兩點,交y軸于P點,記
PM
=λ1
MF
PN
=λ2
NF
,求證:λ12為定值.

查看答案和解析>>

已知圓x2+y2-6x-8y+21=0和直線kx-y-4k+3=0.
(1)求證:不論k取什么值,直線和圓總有兩個不同的公共點;
(2)求當(dāng)k取何值時,直線被圓截得的弦最短,并求這最短弦的長.

查看答案和解析>>

(1)已知點A(5,0),點B在直線y=6上運動,點C單位圓x2+y2=1運動,求AB+BC的最小值及對應(yīng)點B的坐標(biāo).
(2)點P在直線y=6上運動,過點P作單位圓x2+y2=1的兩切線,設(shè)兩切點為Q和R,求證:直線QR恒過定點,并求出定點坐標(biāo).

查看答案和解析>>

已知圓x2+y2=25,△ABC內(nèi)接于此圓,A點的坐標(biāo)(3,4),O為坐標(biāo)原點.
(1)若△ABC的重心是G(
53
,2)
,求直線BC的方程;(三角形重心是三角形三條中線的交點,并且重心到頂點的距離是它到對邊中點距離的兩倍)
(2)若直線AB與直線AC的傾斜角互補,求證:直線BC的斜率為定值.

查看答案和解析>>


同步練習(xí)冊答案