【題目】如圖1,點(diǎn)E是正方形ABCDCD上任意一點(diǎn),以DE為邊作正方形DEFG,連接BF,點(diǎn)M是線段BF中點(diǎn),射線EMBC交于點(diǎn)H,連接CM.

(1)請(qǐng)直接寫(xiě)出CMEM的數(shù)量關(guān)系和位置關(guān)系;

(2)把圖1中的正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)45°,此時(shí)點(diǎn)F恰好落在線段CD上,如圖2,其他條件不變,(1)中的結(jié)論是否成立,請(qǐng)說(shuō)明理由;

(3)把圖1中的正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,此時(shí)點(diǎn)E、G恰好分別落在線段AD、CD上,如圖3,其他條件不變,(1)中的結(jié)論是否成立,請(qǐng)說(shuō)明理由.

【答案】(1)CM=EM,CMEM,理由見(jiàn)解析;(2)(1)中的結(jié)論成立,理由見(jiàn)解析;(3)(1)中的結(jié)論成立,理由見(jiàn)解析.

【解析】(1)延長(zhǎng)EM交AD于H,證明△FME≌△AMH,得到HM=EM,根據(jù)等腰直角三角形的性質(zhì)可得結(jié)論;

(2)根據(jù)正方形的性質(zhì)得到點(diǎn)A、E、C在同一條直線上,根據(jù)直角三角形斜邊上的中線是斜邊的一半證明即可;

(3)根據(jù)題意畫(huà)出完整的圖形,根據(jù)平行線分線段成比例定理、等腰三角形的性質(zhì)證明即可.

(1)如圖1,結(jié)論:CM=EM,CM⊥EM.

理由:∵AD∥EF,AD∥BC,

∴BC∥EF,

∴∠EFM=∠HBM,

在△FME和△BMH中,

,,

∴△FME≌△BMH,

∴HM=EM,EF=BH,

∵CD=BC,

∴CE=CH,∵∠HCE=90°,HM=EM,

∴CM=ME,CM⊥EM.

(2)如圖2,連接AE,

∵四邊形ABCD和四邊形EDGF是正方形,

∴∠FDE=45°,∠CBD=45°,

∴點(diǎn)B、E、D在同一條直線上,

∵∠BCF=90°,∠BEF=90°,M為AF的中點(diǎn),

∴CM=AF,EM=AF,

∴CM=ME,

∵∠EFD=45°,

∴∠EFC=135°,

∵CM=FM=ME,

∴∠MCF=∠MFC,∠MFE=∠MEF,

∴∠MCF+∠MEF=135°,

∴∠CME=360°-135°-135°=90°,

∴CM⊥ME.

(3)如圖3,連接CF,MG,作MN⊥CD于N,

在△EDM和△GDM中,

∴△EDM≌△GDM,

∴ME=MG,∠MED=∠MGD,

∵M(jìn)為BF的中點(diǎn),F(xiàn)G∥MN∥BC,

∴GN=NC,又MN⊥CD,

∴MC=MG,

∴MD=ME,∠MCG=∠MGC,

∵∠MGC+∠MGD=180°,

∴∠MCG+∠MED=180°,

∴∠CME+∠CDE=180°,

∵∠CDE=90°,

∴∠CME=90°,

∴(1)中的結(jié)論成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為落實(shí)“美麗泰州”的工作部署,市政府計(jì)劃對(duì)城區(qū)道路進(jìn)行改造,現(xiàn)安排甲、乙兩個(gè)工程隊(duì)完成該改造工作.已知甲隊(duì)的工作效率是乙隊(duì)工作效率的倍,甲隊(duì)改造720米的道路比乙隊(duì)改造同樣長(zhǎng)的道路少用4.

(1)甲、乙兩工程隊(duì)每天能改造道路的長(zhǎng)度分別是多少米?

(2)若甲隊(duì)工作一天需付費(fèi)用7萬(wàn)元,乙隊(duì)工作一天需付費(fèi)用5萬(wàn)元,若需改造的道路全長(zhǎng)2400米,改造總費(fèi)用不超過(guò)195萬(wàn)元,則至少安排甲隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是菱形,在同一條直線上,.

1)求證:;

2)當(dāng)時(shí),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,MN是⊙O的直徑,作ABMN,垂足為點(diǎn)D,連接AM,AN,點(diǎn)C上一點(diǎn),且,連接CM,交AB于點(diǎn)E,交AN于點(diǎn)F,現(xiàn)給出以下結(jié)論:①AD=BD;②∠MAN=90°;④∠ACM+ANM=MOB;AE=MF

其中正確結(jié)論的個(gè)數(shù)是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AOB30°,點(diǎn)PAOB內(nèi)的一定點(diǎn),且OP6,若點(diǎn)M,N分別是射線OA,OB上異于點(diǎn)O的動(dòng)點(diǎn),則PMN周長(zhǎng)的最小值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:梯形ABCD中,∠ABC90°,∠DAB45°ABDC,DC3,AB5,點(diǎn)PAB邊上,以點(diǎn)A為圓心AP為半徑作弧交邊DC于點(diǎn)E,射線EP于射線CB交于點(diǎn)F

1)若AP,求DE的長(zhǎng);

2)聯(lián)結(jié)CP,若CPEP,求AP的長(zhǎng);

3)線段CF上是否存在點(diǎn)G,使得ADEFGE相似?若相似,求FG的值;若不相似,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,對(duì)角線BD所在的直線上有兩點(diǎn)E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示

(1)求證:△ABE≌△ADF;

(2)試判斷四邊形AECF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線yax2bxc(a0)經(jīng)過(guò)A(1,0),B(4,0),C(0,2)三點(diǎn).

1)求這條拋物線和直線BC的解析式;

2E為拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)E,使以AB、E為頂點(diǎn)的三角形與COB相似?若存在,試求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀:我們約定,在平面直角坐標(biāo)系中,經(jīng)過(guò)某點(diǎn)且平行于坐標(biāo)軸或平行于兩坐標(biāo)軸夾角平分線的直線,叫該點(diǎn)的特征線.例如,點(diǎn)M13)的特征線有:x=1,y=3y=x+2,y=x+4.問(wèn)題與探究:如圖,在平面直角坐標(biāo)系中有正方形OABC,點(diǎn)B在第一象限,A、C分別在x軸和y軸上,拋物線經(jīng)過(guò)B、C兩點(diǎn),頂點(diǎn)D在正方形內(nèi)部.

1)直接寫(xiě)出點(diǎn)Dm,n)所有的特征線 ;

2)若點(diǎn)D有一條特征線是y=x+1,求此拋物線的解析式;

3)點(diǎn)PAB邊上除點(diǎn)A外的任意一點(diǎn),連接OP,將△OAP沿著OP折疊,點(diǎn)A落在點(diǎn)A′的位置,當(dāng)點(diǎn)A在平行于y軸的D點(diǎn)的特征線上時(shí),滿足(2)中條件的拋物線向下平移多少距離,其頂點(diǎn)落在OP上?

查看答案和解析>>

同步練習(xí)冊(cè)答案