2006-2007學(xué)年度四川省成都市初三第三次月考試卷
一、選擇題(本題共10小題,每小題4分,共40分)。
1、函數(shù)y=-中,自變量x 的取值范圍是 ( )
A、x ≠-2 B、x ≤-
2、一種細(xì)菌的半徑是4×10-
A、
3、下列運(yùn)算中,正確的是 ( )
A、=±3 B、(a2)3=a
4、把過期的藥品隨意丟棄,會造成對土
壤和水體的污染,危害人們的健康。如何
處理過期藥品,有關(guān)機(jī)構(gòu)隨機(jī)對若干家庭
進(jìn)行調(diào)查。調(diào)查結(jié)果繪制成如右的扇形統(tǒng)
計圖,則對過期藥品處理正確的家庭的扇
形的圓心角為 ( ) 第4題圖
A、54° B、72° C、288° D、342°
5、如果一元二次方程k x2-4 x+2=0有實數(shù)根,那么k取值范圍是( )
A、
k ≤2 B、k ≥
6、下列語句正確的是 ( )
A、三點確定一個圓
B、三角形的外心到三角形各邊的距離相等
C、不是分式
D、三角形的內(nèi)心不一定在三角形的內(nèi)部
7、扇形的半徑為
A、
8、如圖,⊙O的直徑為
9、某工廠一月份生產(chǎn)零件2萬個,一季度共生產(chǎn)零件7.98萬個,若每月的增長率相同,則每月的平均增長率為( )
A、約100% B、30% C、約15% D、10%
10、某種商品進(jìn)價為800元,標(biāo)價為1200元,由于商品積壓,商店準(zhǔn)備打折出售,但要保證利潤率不低于5%,則至少打 ( )。
A、6折 B、7折 C、7.5折 D、8折
二、填空題(本題共5小題,每小題5分,共25分).
11、(-1)2+()-1-5÷(2.03-π)0的結(jié)果是___________.
12、已知3-是方程 x2+m x+7=0的一個根,則m=______,另一個根為________.
13、半徑分別為4和5的相交兩圓所成的公共弦長為6,則兩圓的圓心距為________.
14、方程+ = 的解是__________.
15、如圖,已知AB⌒是⊙O的直徑,C、D是⊙O上的兩點,且∠D=130°,則∠BAC的度數(shù)為___________.
三、(本題共2小題,每小題8分,共16分).
16、解方程:3 x2=x
17、先化簡再求值:-?,其中x=-1
四、(本題共2小題,每小題12分,共24分)
18、如圖是某工件的二視圖,按圖中尺寸求工件的表面積。
第18題圖
19、如右圖,P是⊙O的弦CB延長線上一點, 點A在⊙O上,且∠PCA=∠BAP.
(1)求證:PA是⊙O的切線。
(2)若PB:BC=2:3且PC=10,求PA的長。
五、(本題滿分12分)
例如,因為23=8,所以log28=3;因為2-3=,所以log2=-3.
(1)根據(jù)定義計算:①log381=______;②log33=______;③log41=______;
④若logx16=4,則;x=________;
(2)設(shè)ax=M, ay=N,則logaM=x,logaN=y(tǒng)( a >0, a≠1,M,N均為正數(shù)) .
∵ax?ay=ax+y,∴ax+y=M?N. ∴l(xiāng)oga(MN) =x+y,即loga(MN) =logaM+logaN.
這是對數(shù)運(yùn)算的重要性質(zhì)之一。進(jìn)一步地,我們可以得出:
loga(M1 M2 M3…Mn) =_________________________________(其中M1 ,M2, M3,…,
Mn均為正數(shù),a >0, a≠1);loga=______________(M,N均為正數(shù),a >0, a≠1)。
六、(本題滿分12分)
21、如圖,在一個橫截面為Rt△ABC的物體中,∠ACB=90°,∠CAB=30°,BC=1米.工人師傅要把此物體搬到墻邊,先將AB邊放在地面(直線l)上,再按順時針方向繞點B翻轉(zhuǎn)到△A1BC1位置(BC1在l上),最后沿BC1的方向平移到△A2B2C2的位置,其平移的距離為線段AC的長度(此時A2C2恰好靠在墻邊)。
(1)請直接寫出AB, AC的長;
(2)畫出在搬動此物的整個過程A點所經(jīng)過的路徑,并求出該路徑的長度。
七、(本題滿分10分)
22、水果店花1500元進(jìn)了一批水果,按50%的利潤定價,無人購買。決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完。經(jīng)結(jié)算,這批水果共盈利500元。若兩次打折相同,每次打了幾折?(精確到0.1折)
八、(本題滿分11分)
23、如圖,∠PAQ是直角,⊙O與AP相切于點T,與AQ交于B、C兩點。
(1)BT是否平分∠OBA?說明你的理由;
(2)若已知AT=4,弦BC=6,試求⊙O的半徑R。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com