(11分)彈性小球從離地高度為H處自由下落到水平地面,碰撞后彈起,由于小球在與地面的碰撞過程中總有機械能損失,且損失量與碰撞時的速度有關,故每次碰撞后上升高度總是前一次的0.64倍。不計空氣阻力,重力加速度為g,求:

(1)小球落地時的速度大小v1與碰撞后彈起的速度大小v2之比;

(2)若要使小球從原處下落后仍能上升到原來高度,則小球在開始下落時需要的最小初速度v0。

(11分)解:(1)根據(jù)vt2v02=2gh(1分),得v12-0=2gH ① (1分),

0-v22=-2g×0.64H ②(1分)    解得v1v2=5︰4(2分)

(2)解法一:要使小球回到原高度,可提高它下降的高度,可讓它從高度處下降。(2分)

則需補償:mv02mgH)(2分)    得v0(2分)

     解法二:v12v02=2gH ③(2分),0-v22=-2gH ④(2分)

     v12v22=25︰16  ⑤    解得  得v0 v2(2分)

練習冊系列答案
相關習題

科目:高中物理 來源: 題型:

彈性小球從離地高度為H處自由下落到水平地面,碰撞后彈起,由于小球在與地面的碰撞過程中總有機械能損失,且損失量與碰撞時的速度有關,故每次碰撞后上升高度總是前一次的0.64倍.不計空氣阻力,重力加速度為g,求:
(1)小球落地時的速度大小v1與碰撞后彈起的速度大小v2之比;
(2)若要使小球從原處下落后仍能上升到原來高度,則小球在開始下落時需要的最小初速度v0

查看答案和解析>>

科目:高中物理 來源:上海市徐匯區(qū)2010屆高三第二次模擬考試物理試題 題型:038

彈性小球從離地高度為H處自由下落到水平地面,碰撞后彈起,由于小球在與地面的碰撞過程中總有機械能損失,且損失量與碰撞時的速度有關,故每次碰撞后上升高度總是前一次的0.64倍.不計空氣阻力,重力加速度為g,求:

(1)小球落地時的速度大小v1與碰撞后彈起的速度大小v2之比;

(2)若要使小球從原處下落后仍能上升到原來高度,則小球在開始下落時需要的最小初速度v0

查看答案和解析>>

科目:高中物理 來源:不詳 題型:問答題

彈性小球從離地高度為H處自由下落到水平地面,碰撞后彈起,由于小球在與地面的碰撞過程中總有機械能損失,且損失量與碰撞時的速度有關,故每次碰撞后上升高度總是前一次的0.64倍.不計空氣阻力,重力加速度為g,求:
(1)小球落地時的速度大小v1與碰撞后彈起的速度大小v2之比;
(2)若要使小球從原處下落后仍能上升到原來高度,則小球在開始下落時需要的最小初速度v0

查看答案和解析>>

科目:高中物理 來源:2010年上海市徐匯區(qū)高考物理二模試卷(解析版) 題型:填空題

彈性小球從離地高度為H處自由下落到水平地面,碰撞后彈起,由于小球在與地面的碰撞過程中總有機械能損失,且損失量與碰撞時的速度有關,故每次碰撞后上升高度總是前一次的0.64倍.不計空氣阻力,重力加速度為g,求:
(1)小球落地時的速度大小v1與碰撞后彈起的速度大小v2之比;
(2)若要使小球從原處下落后仍能上升到原來高度,則小球在開始下落時需要的最小初速度v

查看答案和解析>>

同步練習冊答案