如圖所示,長為L的細繩上端系一質量不計的環(huán),環(huán)套在光滑水平桿上,在細線的下端另一個質量為m的鐵球(可視作質點),球離地的高度h=L,當繩受到大小為3mg的拉力時就會斷裂.現(xiàn)讓環(huán)與球一起以數(shù)學公式的速度向右運動,在A處環(huán)被擋住而立即停止,A離右墻的水平距離也為L.不計空氣阻力,已知當?shù)氐闹亓铀俣葹間,試求:
(1)在環(huán)由運動到被擋住而立即停止瞬間繩對小球的拉力大小如何變化?變化了多少?
(2)在環(huán)停止以后的運動過程中,鐵球的第一次碰撞點離墻角B點的距離是多少?

解:(1)在環(huán)被擋住而立即停止后,小球立即以速率v繞A點做圓周運動,根據(jù)牛頓第二定律和圓周運動的向心力公式有:F-mg=m
解得,繩對小球的拉力大小為:F=3mg
所以繩對鐵球的拉力變大,增加為F-mg=2mg.
(2)根據(jù)計算可知,在環(huán)被A擋住的瞬間繩恰好斷裂,此后小球做平拋運動.
假設小球直接落到地面上,則:h=L=
球的水平位移:x=vt=2L>L
所以小球先與右邊的墻壁碰撞后再落到地面上
設球平拋運動到右墻的時間為t′,則t′=
小球下落的高度h′==
所以求的第一次碰撞點距B的距離為:H=L-
答:
(1)在環(huán)由運動到被擋住而立即停止瞬間繩對鐵球的拉力變大,增加了2mg.
(2)鐵球的第一次碰撞點離墻角B點的距離是
分析:(1)在環(huán)由運動到被擋住而立即停止后,小球立即以速率v繞A點做圓周運動,由重力與繩子的拉力的合力提供向心力,根據(jù)牛頓第二定律求出繩子的拉力,再求解拉力的變化量.
(3)在環(huán)停止以后,若繩子斷裂,小球將做平拋運動.假設小球直接落在地面上,求出水平位移,分析小球能否與墻碰撞.若與墻碰撞,碰撞后小球水平方向仍做勻速運動.再由運動學公式求解鐵球的第一次碰撞點離墻角B點的距離.
點評:本題是圓周運動與平拋運動的綜合,運用假設法判斷小球能否與墻碰撞.
練習冊系列答案
相關習題

科目:高中物理 來源: 題型:

如圖所示,長為L的細繩上端系一質量不計的環(huán),環(huán)套在光滑水平桿上,在細線的下端吊一個質量為m的鐵球(可視作質點),球離地的高度h=L,當繩受到大小為3mg的拉力時就會斷裂,現(xiàn)讓環(huán)與球一起以v=
2gL
的速度向右運動,在A處環(huán)被擋住而立即停止,A離右墻的水平距離也為L.不計空氣阻力,已知當?shù)氐闹亓铀俣葹間.則:
(1)試通過計算分析環(huán)在被擋住停止運動后繩子是否會斷?
(2)在以后的運動過程中,球第一次的碰撞點離墻角B點的距離是多少?
(3)若球在碰撞過程中無能量損失,則球第二次的碰撞點離墻角B點的距離又是多少?

查看答案和解析>>

科目:高中物理 來源: 題型:

如圖所示,長為L的細繩一端固定,另一端系一質量為m的小球.給小球一個合適的初速度,小球便可在水平面內做勻速圓周運動,這樣就構成了個圓錐擺,設細繩與豎直方向的夾角為θ.下列說法中正確的是( 。

查看答案和解析>>

科目:高中物理 來源: 題型:

如圖所示,長為L的細繩,一端系有一質量為m的小球,另一端固定在O點,細繩能夠承受的最大拉力為9mg.現(xiàn)將小球拉至細繩呈水平位置,然后由靜止釋放,小球將在豎直平面內擺動,不計空氣阻力.求:
(1)小球通過O點正下方時,小球對繩的拉力.
(2)如果在豎直平面內直線OA(OA與豎直方向的夾角為θ)上某一點O′釘一個小釘,為使小球可繞O′點在豎茸水平面內做完整圓周運動,且細繩不致被拉斷,OO′的長度d所允許的范圍.

查看答案和解析>>

科目:高中物理 來源: 題型:

(2012?杭州模擬)如圖所示,長為L的細繩一端固定在O點,另一端拴住一個小球,在O點的正下方與O點相距2L/3的地方有一枚與豎直平面垂直的釘子A;把球拉起使細繩在水平方向伸直,由靜止開始釋放,當細線碰到釘子后的瞬間(細繩沒有斷),下列說法正確的是(  )

查看答案和解析>>

科目:高中物理 來源: 題型:

精英家教網(wǎng)如圖所示,長為L的細繩,一端系著一只小球,另一端懸于O點,將小球由圖示位置由靜止釋放,當擺到O點正下方時,繩被小釘擋。斸斪臃謩e處于圖中A、B、C三個不同位置時,小球繼續(xù)擺的最大高度分別為h1、h2、h3,則( 。

查看答案和解析>>

同步練習冊答案