科目: 來源: 題型:
【題目】某企業(yè)現(xiàn)有A.B兩套設(shè)備生產(chǎn)某種產(chǎn)品,現(xiàn)從A,B兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測某一項質(zhì)量指標(biāo)值,若該項質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.圖1是從A設(shè)備抽取的樣本頻率分布直方圖,表1是從B設(shè)備抽取的樣本頻數(shù)分布表.
圖1:A設(shè)備生產(chǎn)的樣本頻率分布直方圖
表1:B設(shè)備生產(chǎn)的樣本頻數(shù)分布表
質(zhì)量指標(biāo)值 | ||||||
頻數(shù) | 2 | 18 | 48 | 14 | 16 | 2 |
(1)請估計A.B設(shè)備生產(chǎn)的產(chǎn)品質(zhì)量指標(biāo)的平均值;
(2)企業(yè)將不合格品全部銷毀后,并對合格品進(jìn)行等級細(xì)分,質(zhì)量指標(biāo)值落在內(nèi)的定為一等品,每件利潤240元;質(zhì)量指標(biāo)值落在或內(nèi)的定為二等品,每件利潤180元;其它的合格品定為三等品,每件利潤120元.根據(jù)圖1、表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率.企業(yè)由于投入資金的限制,需要根據(jù)A,B兩套設(shè)備生產(chǎn)的同一種產(chǎn)品每件獲得利潤的期望值調(diào)整生產(chǎn)規(guī)模,請根據(jù)以上數(shù)據(jù),從經(jīng)濟效益的角度考慮企業(yè)應(yīng)該對哪一套設(shè)備加大生產(chǎn)規(guī)模?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,底面ABCD是邊長為2的菱形,,平面ABCD,,,BE與平面ABCD所成的角為.
(1)求證:平面平面BDE;
(2)求二面角B-EF-D的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】據(jù)歷年大學(xué)生就業(yè)統(tǒng)計資料顯示:某大學(xué)理工學(xué)院學(xué)生的就業(yè)去向涉及公務(wù)員、教師、金融、公司和自主創(chuàng)業(yè)等五大行業(yè)2020屆該學(xué)院有數(shù)學(xué)與應(yīng)用數(shù)學(xué)、計算機科學(xué)與技術(shù)和金融工程等三個本科專業(yè),畢業(yè)生人數(shù)分別是70人,140人和210人現(xiàn)采用.分層抽樣的方法,從該學(xué)院畢業(yè)生中抽取18人調(diào)查學(xué)生的就業(yè)意向.
(1)應(yīng)從該學(xué)院三個專業(yè)的畢業(yè)生中分別抽取多少人?
(2)國家鼓勵大學(xué)生自主創(chuàng)業(yè),在抽取的18人中,就業(yè)意向恰有三個行業(yè)的學(xué)生有5人為方便統(tǒng)計,將恰有三個行業(yè)就業(yè)意向的這5名學(xué)生分別記為、、、、,統(tǒng)計如下表:
公務(wù)員 | ○ | ○ | × | ○ | × |
教師 | ○ | × | ○ | × | ○ |
金融 | ○ | ○ | ○ | × | ○ |
公式 | × | × | ○ | ○ | ○ |
自主創(chuàng)業(yè) | × | ○ | ○ | × |
其中“○”表示有該行業(yè)就業(yè)意向,“×”表示無該行業(yè)就業(yè)意向.
現(xiàn)從、、、、這5人中隨機抽取2人接受采訪.設(shè)為事件“抽取的2人中至少有一人有自主創(chuàng)業(yè)意向”,求事件發(fā)生的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,曲線的方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)曲線與直線交于點,點的坐標(biāo)為(3,1),求.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正方體的棱長為2,平面.平面截此正方體所得的截面有以下四個結(jié)論:
①截面形狀可能是正三角形②截面的形狀可能是正方形
③截面形狀可能是正五邊形④截面面積最大值為
則正確結(jié)論的編號是( )
A.①④B.①③C.②③D.②④
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,四邊形是邊長為2的正方形,,為的中點,點在上,平面,在的延長線上,且.
(1)證明:平面.
(2)過點作的平行線,與直線相交于點,當(dāng)點在線段上運動時,二面角能否等于?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓()的左、右焦點分別是,,點為的上頂點,點在上,,且.
(1)求的方程;
(2)已知過原點的直線與橢圓交于,兩點,垂直于的直線過且與橢圓交于,兩點,若,求.
查看答案和解析>>
科目: 來源: 題型:
【題目】2019年12月以來,湖北武漢市發(fā)現(xiàn)多起病毒性肺炎病例,并迅速在全國范圍內(nèi)開始傳播,專家組認(rèn)為,本次病毒性肺炎病例的病原體初步判定為新型冠狀病毒,該病毒存在人與人之間的傳染,可以通過與患者的密切接觸進(jìn)行傳染.我們把與患者有過密切接觸的人群稱為密切接觸者,每位密切接觸者被感染后即被稱為患者.已知每位密切接觸者在接觸一個患者后被感染的概率為,某位患者在隔離之前,每天有位密切接觸者,其中被感染的人數(shù)為,假設(shè)每位密切接觸者不再接觸其他患者.
(1)求一天內(nèi)被感染人數(shù)為的概率與、的關(guān)系式和的數(shù)學(xué)期望;
(2)該病毒在進(jìn)入人體后有14天的潛伏期,在這14天的潛伏期內(nèi)患者無任何癥狀,為病毒傳播的最佳時間,設(shè)每位患者在被感染后的第二天又有位密切接觸者,從某一名患者被感染,按第1天算起,第天新增患者的數(shù)學(xué)期望記為.
(i)求數(shù)列的通項公式,并證明數(shù)列為等比數(shù)列;
(ii)若戴口罩能降低每位密切接觸者患病概率,降低后的患病概率,當(dāng)取最大值時,計算此時所對應(yīng)的值和此時對應(yīng)的值,根據(jù)計算結(jié)果說明戴口罩的必要性.(取)
(結(jié)果保留整數(shù),參考數(shù)據(jù):)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com