科目: 來源: 題型:
【題目】現(xiàn)代社會的競爭,是人才的競爭,各國、各地區(qū)、各單位都在廣納賢人,以更好更快的促進國家、地區(qū)、單位的發(fā)展.某單位進行人才選拔考核,該考核共有三輪,每輪都只設置一個項目問題,能正確解決項目問題者才能進入下一輪考核;不能正確解決者即被淘汰.三輪的項目問題都正確解決者即被錄用.已知A選手能正確解決第一、二、三輪的項目問題的概率分別為、、,且各項目問題能否正確解決互不影響.
(1)求A選手被淘汰的概率;
(2)設該選手在選拔中正確解決項目問題的個數為,求的分布列與數學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】數列{an}的前n項和為Sn,且Sn=n(n+1)(n∈N*).
(1)求數列{an}的通項公式;
(2)若數列{bn}滿足:,求數列{bn}的通項公式;
(3)令(n∈N*),求數列{cn}的前n項和Tn.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠生產一批零件,為了解這批零件的質量狀況,檢驗員從這批產品中隨機抽取了100件作為樣本進行檢測,將它們的重量(單位:g)作為質量指標值.由檢測結果得到如下頻率分布直方圖.
分組 | 頻數 | 頻率 |
8 | ||
16 | 0.16 | |
4 | 0.04 | |
合計 | 100 | 1 |
(1)求圖中的值;
(2)根據質量標準規(guī)定:零件重量小于47或大于53為不合格品,重量在區(qū)間和內為合格品,重量在區(qū)間內為優(yōu)質品.已知每件產品的檢測費用為5元,每件不合格品的回收處理費用為20元.以抽檢樣本重量的頻率分布作為該零件重量的概率分布.若這批零件共件,現(xiàn)有兩種銷售方案:方案一:不再檢測其他零件,整批零件除對已檢測到的不合格品進行回收處理,其余零件均按150元/件售出;方案二:繼續(xù)對剩余零件的重量進行逐一檢測,回收處理所有不合格品,合格品按150元/件售出,優(yōu)質品按200元/件售出.僅從獲得利潤大的角度考慮,該生產商應選擇哪種方案?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在數列中,若是正整數,且, ,則稱為“D-數列”.
(1)舉出一個前六項均不為零的“D-數列”(只要求依次寫出該數列的前六項);
(2)若“D-數列”中,,,數列滿足,,分別判斷當時,與的極限是否存在?如果存在,求出其極限值(若不存在不需要交代理由);
(3)證明:任何“D-數列”中總含有無窮多個為零的項.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,過軸正方向上一點任作一直線,與拋物線相交于兩點,一條垂直于軸的直線分別與線段和直線交于點.
(1)若,求的值;
(2)若為線段的中點,求證:直線與該拋物線有且僅有一個公共點.
(3)若直線的斜率存在,且與該拋物線有且僅有一個公共點,試問是否一定為線段的中點?說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某加油站擬建造如圖所示的鐵皮儲油罐(不計厚度,長度單位為米),其中儲油罐的中間為圓柱形,左右兩端均為半球形,(為圓柱的高,為球的半徑,).假設該儲油罐的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為千元,半球形部分每平方米建造費用為千元.設該儲油罐的建造費用為千元.
(1) 寫出關于的函數表達式,并求該函數的定義域;
(2) 若預算為萬元,求所能建造的儲油罐中的最大值(精確到),并求此時儲油罐的體積(單位: 立方米,精確到立方米).
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠生產一批零件,為了解這批零件的質量狀況,檢驗員從這批產品中隨機抽取了100件作為樣本進行檢測,將它們的重量(單位:g)作為質量指標值.由檢測結果得到如下頻率分布直方圖.
分組 | 頻數 | 頻率 |
8 | ||
16 | 0.16 | |
4 | 0.04 | |
合計 | 100 | 1 |
(1)求圖中的值;
(2)根據質量標準規(guī)定:零件重量小于47或大于53為不合格品,重量在區(qū)間和內為合格品,重量在區(qū)間內為優(yōu)質品.已知每件產品的檢測費用為5元,每件不合格品的回收處理費用為20元.以抽檢樣本重量的頻率分布作為該零件重量的概率分布.若這批零件共件,現(xiàn)有兩種銷售方案:方案一:不再檢測其他零件,整批零件除對已檢測到的不合格品進行回收處理,其余零件均按150元/件售出;方案二:繼續(xù)對剩余零件的重量進行逐一檢測,回收處理所有不合格品,合格品按150元/件售出,優(yōu)質品按200元/件售出.僅從獲得利潤大的角度考慮,該生產商應選擇哪種方案?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,射線的普通方程為,曲線的參數方程為(為參數).以O為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出與的極坐標方程;
(2)設與的交點為P(點P不為極點),與的交點為Q,當在上變化時,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com