科目: 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面PCD,,,,E為AD的中點,AC與BE相交于點O.
(1)證明:平面ABCD.
(2)求直線BC與平面PBD所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解貴州省某州2020屆高三理科生的化學成績的情況,該州教育局組織高三理科生進行了摸底考試,現(xiàn)從參加考試的學生中隨機抽取了100名理科生,,將他們的化學成績(滿分為100分)分為6組,得到如圖所示的頻率分布直方圖.
(1)求a的值;
(2)記A表示事件“從參加考試的所有理科生中隨機抽取一名學生,該學生的化學成績不低于70分”,試估計事件A發(fā)生的概率;
(3)在抽取的100名理科生中,采用分層抽樣的方法從成績在內(nèi)的學生中抽取10名,再從這10名學生中隨機抽取4名,記這4名理科生成績在內(nèi)的人數(shù)為X,求X的分布列與數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系上,有一點列,設點的坐標(),其中. 記,,且滿足().
(1)已知點,點滿足,求的坐標;
(2)已知點,(),且()是遞增數(shù)列,點在直線:上,求;
(3)若點的坐標為,,求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,橢圓的左、右頂點分別為A、B,雙曲線以A、B為頂點,焦距為,點P是上在第一象限內(nèi)的動點,直線AP與橢圓相交于另一點Q,線段AQ的中點為M,記直線AP的斜率為為坐標原點.
(1)求雙曲線的方程;
(2)求點M的縱坐標的取值范圍;
(3)是否存在定直線使得直線BP與直線OM關(guān)于直線對稱?若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,沿河有A、B兩城鎮(zhèn),它們相距千米.以前,兩城鎮(zhèn)的污水直接排入河里,現(xiàn)為保護環(huán)境,污水需經(jīng)處理才能排放.兩城鎮(zhèn)可以單獨建污水處理廠,或者聯(lián)合建污水處理廠(在兩城鎮(zhèn)之間或其中一城鎮(zhèn)建廠,用管道將污水從各城鎮(zhèn)向污水處理廠輸送).依據(jù)經(jīng)驗公式,建廠的費用為(萬元),表示污水流量;鋪設管道的費用(包括管道費)(萬元),表示輸送污水管道的長度(千米).已知城鎮(zhèn)A和城鎮(zhèn)B的污水流量分別為、,、兩城鎮(zhèn)連接污水處理廠的管道總長為千米.假定:經(jīng)管道輸送的污水流量不發(fā)生改變,污水經(jīng)處理后直接排入河中.請解答下列問題(結(jié)果精確到):
(1)若在城鎮(zhèn)A和城鎮(zhèn)B單獨建廠,共需多少總費用?
(2)考慮聯(lián)合建廠可能節(jié)約總投資,設城鎮(zhèn)A到擬建廠的距離為千米,求聯(lián)合建廠的總費用與的函數(shù)關(guān)系式,并求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于數(shù)列,定義, .
(1) 若,是否存在,使得?請說明理由;
(2) 若, ,求數(shù)列的通項公式;
(3) 令,求證:“為等差數(shù)列”的充要條件是“的前4項為等差數(shù)列,且為等差數(shù)列”.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,是某海灣旅游區(qū)的一角,其中,為了營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會決定在直線海岸和上分別修建觀光長廊和AC,其中是寬長廊,造價是元/米,是窄長廊,造價是元/米,兩段長廊的總造價為120萬元,同時在線段上靠近點的三等分點處建一個觀光平臺,并建水上直線通道(平臺大小忽略不計),水上通道的造價是元/米.
(1) 若規(guī)劃在三角形區(qū)域內(nèi)開發(fā)水上游樂項目,要求的面積最大,那么和的長度分別為多少米?
(2) 在(1)的條件下,建直線通道還需要多少錢?
查看答案和解析>>
科目: 來源: 題型:
【題目】某條公共汽車線路收支差額與乘客量的函數(shù)關(guān)系如下圖所示(收支差額=車票收入-支出費用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(1)不改變車票價格,減少支出費用;建議(2)不改變支出費用,提高車票價格.下面給出的四個圖形中,實線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則( )
A.①反映建議(2),③反映建議(1)B.①反映建議(1),③反映建議(2)
C.②反映建議(1),④反映建議(2)D.④反映建議(1),②反映建議(2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com