相關習題
 0  264827  264835  264841  264845  264851  264853  264857  264863  264865  264871  264877  264881  264883  264887  264893  264895  264901  264905  264907  264911  264913  264917  264919  264921  264922  264923  264925  264926  264927  264929  264931  264935  264937  264941  264943  264947  264953  264955  264961  264965  264967  264971  264977  264983  264985  264991  264995  264997  265003  265007  265013  265021  266669 

科目: 來源: 題型:

【題目】已知平面直角坐標系xOy,在x軸的正半軸上,依次取點,,,并在第一象限內(nèi)的拋物線上依次取點,,,,使得都為等邊三角形,其中為坐標原點,設第n個三角形的邊長為

,,并猜想不要求證明);

,記為數(shù)列中落在區(qū)間內(nèi)的項的個數(shù),設數(shù)列的前m項和為,試問是否存在實數(shù),使得對任意恒成立?若存在,求出的取值范圍;若不存在,說明理由;

已知數(shù)列滿足:,數(shù)列滿足:,求證:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知雙曲線的左、右焦點分別是、,左、右兩頂點分別是、,弦ABCD所在直線分別平行于x軸與y軸,線段BA的延長線與線段CD相交于點如圖).

的一條漸近線的一個方向向量,試求的兩漸近線的夾角;

,,試求雙曲線的方程;

的條件下,且,點C與雙曲線的頂點不重合,直線和直線與直線l分別相交于點MN,試問:以線段MN為直徑的圓是否恒經(jīng)過定點?若是,請求出定點的坐標;若不是,試說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】某游戲廠商對新出品的一款游戲設定了“防沉迷系統(tǒng)”,規(guī)則如下:

①3小時以內(nèi)(3小時)為健康時間,玩家在這段時間內(nèi)獲得的累積經(jīng)驗值單位:與游玩時間小時)滿足關系式:

②35小時(5小時)為疲勞時間,玩家在這段時間內(nèi)獲得的經(jīng)驗值為即累積經(jīng)驗值不變);

超過5小時為不健康時間,累積經(jīng)驗值開始損失,損失的經(jīng)驗值與不健康時間成正比例關系,比例系數(shù)為50.

時,寫出累積經(jīng)驗值E與游玩時間t的函數(shù)關系式,并求出游玩6小時的累積經(jīng)驗值;

該游戲廠商把累積經(jīng)驗值E與游玩時間t的比值稱為“玩家愉悅指數(shù)”,記作;若,且該游戲廠商希望在健康時間內(nèi),這款游戲的“玩家愉悅指數(shù)”不低于24,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】若函數(shù)滿足:集合中至少存在三個不同的數(shù)構成等比數(shù)列,則稱函數(shù)是等比源函數(shù)

)判斷下列函數(shù):①;中,哪些是等比源函數(shù)?(不需證明)

)判斷函數(shù)是否為等比源函數(shù),并證明你的結論.

)證明: , ,函數(shù)都是等比源函數(shù)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓,是它的上頂點,點各不相同且均在橢圓上.

1)若恰為橢圓長軸的兩個端點,求的面積;

2)若,求證:直線過一定點;

3)若,的外接圓半徑為,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知在平面直角坐標系中,圓的參數(shù)方程為 (為參數(shù)).以原點為極點,軸的非負半軸為極軸,取相同的單位長度建立極坐標系.

(I)求圓的普通方程及其極坐標方程;

(II)設直線的極坐標方程為,射線與圓的交點為,與直線的交點為Q,求線段PQ的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),為常數(shù))在內(nèi)有兩個極值點,

(1)求實數(shù)的取值范圍;

(2)求證:.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線的焦點為,直線交于,兩點,且與軸交于點.

1)若直線的斜率,且,求的值;

2)若,軸上是否存在點,總有?若存在,求出點坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在底面為矩形的四棱錐中,平面平面.

1)證明:;

2)若,設中點,求直線與平面所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知矩形,,,將沿對角線進行翻折,得到三棱錐,則在翻折的過程中,有下列結論:

①三棱錐的體積最大值為;

②三棱錐的外接球體積不變;

③三棱錐的體積最大值時,二面角的大小是;

④異面直線所成角的最大值為.

其中正確的是(

A.①②④B.②③C.②④D.③④

查看答案和解析>>

同步練習冊答案