科目: 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的直角坐標(biāo)方程與直線(xiàn)的極坐標(biāo)方程;
(2)若射線(xiàn)與曲線(xiàn)交于點(diǎn)(不同于原點(diǎn)),與直線(xiàn)交于點(diǎn),直線(xiàn)與極軸所在直線(xiàn)交于點(diǎn).求的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)且時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若函數(shù)的兩個(gè)極值點(diǎn)分別為、,證明.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知過(guò)橢圓的左焦點(diǎn),作斜率為的直線(xiàn),交橢圓于兩點(diǎn).
(1)若原點(diǎn)到直線(xiàn)的距離為,求直線(xiàn)的方程;
(2)設(shè)點(diǎn),直線(xiàn)與橢圓交于另一點(diǎn),直線(xiàn)與橢圓交于另一點(diǎn).設(shè)的斜率為,則是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】每年春晚都是萬(wàn)眾矚目的時(shí)刻,這些節(jié)目體現(xiàn)的文化內(nèi)涵、歷史背景等反映了社會(huì)的進(jìn)步.國(guó)家的富強(qiáng),人民生活水平的提高等.某學(xué)校高三年級(jí)主任開(kāi)學(xué)初為了解學(xué)生在看春晚后對(duì)節(jié)目體現(xiàn)的文化內(nèi)涵、歷史背景等是否會(huì)在今年的高考題中體現(xiàn)進(jìn)行過(guò)思考,特地隨機(jī)抽取100名高三學(xué)生(其中文科學(xué)生50,理科學(xué)生50名),進(jìn)行了調(diào)查.統(tǒng)計(jì)數(shù)據(jù)如表所示(不完整):
“思考過(guò)” | “沒(méi)有思考過(guò)” | 總計(jì) | |
文科學(xué)生 | 40 | 10 | |
理科學(xué)生 | 30 | ||
總計(jì) | 100 |
(1)補(bǔ)充完整所給表格,并根據(jù)表格數(shù)據(jù)計(jì)算是否有的把握認(rèn)為看春晚后會(huì)思考節(jié)目體現(xiàn)的文化內(nèi)涵、歷史背景等與文理科學(xué)生有關(guān);
(2)①現(xiàn)從上表的”思考過(guò)”的文理科學(xué)生中按分層抽樣選出7人.再?gòu)倪@7人中隨機(jī)抽取4人,記這4人中“文科學(xué)生”的人數(shù)為,試求的分布列與數(shù)學(xué)期望;
②現(xiàn)設(shè)計(jì)一份試卷(題目知識(shí)點(diǎn)來(lái)自春晚相關(guān)知識(shí)整合與變化),假設(shè)“思考過(guò)”的學(xué)生及格率為,“沒(méi)有思考過(guò)”的學(xué)生的及格率為.現(xiàn)從“思考過(guò)”與“沒(méi)有思考過(guò)”的學(xué)生中分別隨機(jī)抽取一名學(xué)生進(jìn)行測(cè)試,求兩人至少有一個(gè)及格的概率.
附參考公式:,其中.
參考數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,底面是直角梯形,,.
(1)證明:當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),始終有平面平面;
(2)求銳二而角的余弦值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】甲、乙、丙、丁四人進(jìn)行一項(xiàng)益智游戲,方法如下:第一步:先由四人看著平面直角坐標(biāo)系中方格內(nèi)的16個(gè)棋子(如圖所示),甲從中記下某個(gè)棋子的坐標(biāo);第二步:甲分別告訴其他三人:告訴乙棋子的橫坐標(biāo).告訴丙棋子的縱坐標(biāo),告訴丁棋子的橫坐標(biāo)與縱坐標(biāo)相等;第三步:由乙、丙、丁依次回答.對(duì)話(huà)如下:“乙先說(shuō)我無(wú)法確定.丙接著說(shuō)我也無(wú)法確定.最后丁說(shuō)我知道”.則甲記下的棋子的坐標(biāo)為_____.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某地的中小學(xué)辦學(xué)條件在政府的教育督導(dǎo)下,迅速得到改變.教育督導(dǎo)一年后.分別隨機(jī)抽查了初中(用表示)與小學(xué)(用表示)各10所學(xué)校.得到相關(guān)指標(biāo)的綜合評(píng)價(jià)得分(百分制)的莖葉圖如圖所示.則從莖葉圖可得出正確的信息為( )(80分及以上為優(yōu)秀). ①初中得分與小學(xué)得分的優(yōu)秀率相同;②初中得分與小學(xué)得分的中位數(shù)相同③初中得分的方差比小學(xué)得分的方差大④初中得分與小學(xué)得分的平均分相同.
A.①②B.①③C.②④D.③④
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時(shí),
①求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
②求函數(shù)在區(qū)間上的值域.
(2)對(duì)于任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,設(shè)拋物線(xiàn)的準(zhǔn)線(xiàn)與軸交于橢圓的右焦點(diǎn)為的左焦點(diǎn).橢圓的離心率為,拋物線(xiàn)與橢圓交于軸上方一點(diǎn),連接并延長(zhǎng)其交于點(diǎn), 為上一動(dòng)點(diǎn),且在之間移動(dòng).
(1)當(dāng)取最小值時(shí),求和的方程;
(2)若的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù),當(dāng)面積取最大值時(shí),求面積最大值以及此時(shí)直線(xiàn)的方程.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】2018 年1月16日,由新華網(wǎng)和中國(guó)財(cái)經(jīng)領(lǐng)袖聯(lián)盟聯(lián)合主辦的2017中國(guó)財(cái)經(jīng)年度人物評(píng)選結(jié)果揭曉,某知名網(wǎng)站財(cái)經(jīng)頻道為了解公眾對(duì)這些年度人物是否了解,利用網(wǎng)絡(luò)平臺(tái)進(jìn)行了調(diào)查,并從參與調(diào)查者中隨機(jī)選出人,把這人分為 兩類(lèi)(類(lèi)表示對(duì)這些年度人物比較了解,類(lèi)表示對(duì)這些年度人物不太了解),并制成如下表格:
年齡段 | 歲~歲 | 歲~歲 | 歲~歲 | 歲~歲 |
人數(shù) | ||||
類(lèi)所占比例 |
(1)若按照年齡段進(jìn)行分層抽樣,從這人中選出人進(jìn)行訪(fǎng)談,并從這人中隨機(jī)選出兩名幸運(yùn)者給予獎(jiǎng)勵(lì).求其中一名幸運(yùn)者的年齡在歲~歲之間,另一名幸運(yùn)者的年齡在歲~歲之間的概率;(注:從人中隨機(jī)選出人,共有種不同選法)
(2)如果把年齡在 歲~歲之間的人稱(chēng)為青少年,年齡在歲~歲之間的人稱(chēng)為中老年,則能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為青少年與中老年人在對(duì)財(cái)經(jīng)年度人物的了解程度上有差異?
參考數(shù)據(jù):
,其中
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com